

Internet of Things
Principles and Paradigms

Page left intentionally blank

Internet of Things
Principles and Paradigms

Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computing and Information Systems
The University of Melbourne, Australia

Manjrasoft Pty Ltd, Australia

Amir Vahid Dastjerdi
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computing and Information Systems
The University of Melbourne, Australia

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Edited by

Morgan Kaufmann is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA

Copyright © 2016 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechani-
cal, including photocopying, recording, or any information storage and retrieval system, without permission in
writing from the publisher. Details on how to seek permission, further information about the Publisher’s permis-
sions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-805395-9

For information on all Morgan Kaufmann publications
visit our website at https://www.elsevier.com/

Publisher: Todd Green
Acquisition Editor: Brian Romer
Editorial Project Manager: Amy Invernizzi
Project Manager: Priya Kumaraguruparan
Designer: Maria Inês Cruz

Typeset by Thomson Digital

http://www.elsevier.com/permissions
https://www.elsevier.com/

v

Contents

List of Contributors ...xv
About the Editors ...xix
Preface ..xxi
Acknowledgments ... xxiii

PART I IoT ECOSYSTEM CONCEPTS AND ARCHITECTURES
CHAPTER 1 Internet of Things: An Overview ..3

F. Khodadadi, A.V. Dastjerdi, R. Buyya

1.1 Introduction ..3
1.2 Internet of Things Definition Evolution ...5

1.2.1 IoT Emergence ...5
1.2.2 Internet of Everything ..5
1.2.3 Industrial IoT ...5
1.2.4 Smartness in IoT ..5
1.2.5 Market Share ..6
1.2.6 Human in the Loop ..7
1.2.7 Improving the Quality of Life ..7

1.3 IoT Architectures ..7
1.3.1 SOA-Based Architecture ..8
1.3.2 API-Oriented Architecture ...9

1.4 Resource Management ...10
1.4.1 Resource Partitioning ...10
1.4.2 Computation Offloading ..11
1.4.3 Identification and Resource/Service Discovery ...12

1.5 IoT Data Management and Analytics ...12
1.5.1 IoT and the Cloud ..13
1.5.2 Real-Time Analytics in IoT and Fog Computing ..14

1.6 Communication Protocols ..15
1.6.1 Network Layer ...16
1.6.2 Transport and Application Layer ...16

1.7 Internet of Things Applications ..18
1.7.1 Monitoring and Actuating ..18
1.7.2 Business Process and Data Analysis ..19
1.7.3 Information Gathering and Collaborative Consumption19

1.8 Security ...19
1.9 Identity Management and Authentication ..21

vi Contents

1.10 Privacy ..21
1.11 Standardization and Regulatory Limitations ..22
1.12 Conclusions ..22
References ..23

CHAPTER 2 Open Source Semantic Web Infrastructure for Managing IoT
Resources in the Cloud.. 29

N. Kefalakis, S. Petris, C. Georgoulis, J. Soldatos

2.1 Introduction ..29
2.2 Background/Related Work ..30
2.3 OpenIoT Architecture for IoT/Cloud Convergence ..32
2.4 Scheduling Process and IoT Services Lifecycle ...35
2.5 Scheduling and Resource Management ..41
2.6 Validating Applications and Use Cases ..45
2.7 Future Research Directions ..46
2.8 Conclusions ..46
References ..47

CHAPTER 3 Device/Cloud Collaboration Framework
for Intelligence Applications ... 49

Y. Yoon, D. Ban, S. Han, D. An, E. Heo

3.1 Introduction ..49
3.2 Background and Related Work ...49
3.3 Device/Cloud Collaboration Framework ..50

3.3.1 Powerful Smart Mobile Devices ..50
3.3.2 Runtime Adaptation Engine ...51
3.3.3 Privacy-Protection Solution ...52

3.4 Applications of Device/Cloud Collaboration ...54
3.4.1 Context-Aware Proactive Suggestion ..54
3.4.2 Semantic QA Cache ...56
3.4.3 Image and Speech Recognition ...57

3.5 Future Work ..59
3.6 Conclusions ..59
References ..59

CHAPTER 4 Fog Computing: Principles, Architectures, and Applications 61

A.V. Dastjerdi, H. Gupta, R.N. Calheiros, S.K. Ghosh, R. Buyya

4.1 Introduction ..61
4.2 Motivating Scenario ...62
4.3 Definitions and Characteristics ...63

viiContents

4.4 Reference Architecture ...64
4.5 Applications ..66

4.5.1 Healthcare ..66
4.5.2 Augmented Reality ..66
4.5.3 Caching and Preprocessing ..68

4.6 Research Directions and Enablers ..68
4.6.1 Programming Models ..68
4.6.2 Security and Reliability ...69
4.6.3 Resource Management ...69
4.6.4 Energy Minimization ...70

4.7 Commercial Products ...70
4.7.1 Cisco IOx ...70
4.7.2 Data in Motion ...71
4.7.3 LocalGrid ...71
4.7.4 ParStream ...71
4.7.5 Prismtech Vortex ..71

4.8 Case Study ..72
4.8.1 Experiment Setup ...73
4.8.2 Performance Evaluation ...73

4.9 Conclusions ..74
References ..75

PART II IoT ENABLERS AND SOLUTIONS
CHAPTER 5 Programming Frameworks for Internet of Things 79

J. Krishnamurthy, M. Maheswaran

5.1 Introduction ..79
5.2 Background ...80

5.2.1 Overview ..80
5.2.2 Embedded Device Programming Languages ...80
5.2.3 Message Passing in Devices ..83
5.2.4 Coordination Languages ..87
5.2.5 Polyglot Programming ...89

5.3 Survey of IoT Programming Frameworks ..91
5.3.1 Overview ..91
5.3.2 IoT Programming Approaches ...91
5.3.3 Existing IoT Frameworks ..92
5.3.4 Summary ..98

5.4 Future Research Directions ..100
5.5 Conclusions ..100
References ..101

viii Contents

CHAPTER 6 Virtualization on Embedded Boards as Enabling
Technology for the Cloud of Things ...103

B. Bardhi, A. Claudi, L. Spalazzi, G. Taccari, L. Taccari

6.1 Introduction ..103
6.2 Background ...105

6.2.1 ARM Virtualization Extensions ...107
6.2.2 XEN ARM Virtualization ..108
6.2.3 KVM ARM Virtualization ...108
6.2.4 Container-Based Virtualization ..109

6.3 Virtualization and Real-Time ...110
6.4 Experimental Results ..112

6.4.1 Reference Architecture ..112
6.4.2 Benchmarking Tools ..113
6.4.3 Discussion ..113

6.5 Future Research Directions ..121
6.6 Conclusions ..122
References ..122

CHAPTER 7 Micro Virtual Machines (MicroVMs) for Cloud-Assisted
Cyber-Physical Systems (CPS) ...125

J.V. Pradilla, C.E. Palau

7.1 Introduction ..125
7.2 Related Work ..128

7.2.1 Virtual Machines and Micro Virtual Machines ..128
7.2.2 Other Architectures ..129

7.3 Architecture for Deploying CPS in the Cloud and the Expansion of the IoT130
7.4 Extending the Possibilities of the IoT by Cloud Computing132
7.5 Micro Virtual Machines with the Sensor Observation Service,
 the Path Between Smart Objects and CPS..133

7.5.1 Virtual Machines and Sensor Observation Service ..133
7.5.2 Implementation ..135

7.6 IoT Architecture for Selected Use Cases ..135
7.6.1 eHealth ...136
7.6.2 Precision Agriculture ...137
7.6.3 Domotic ...139

7.7 Future Research Directions ..140
7.8 Conclusions ..140
References ..141

ixContents

PART III IoT DATA AND KNOWLEDGE MANAGEMENT
CHAPTER 8 Stream Processing in IoT: Foundations, State-of-the-Art,

and Future Directions ...145

X. Liu, A.V. Dastjerdi, R. Buyya

8.1 Introduction ..145
8.2 The Foundations of Stream Processing in IoT ...147

8.2.1 Stream ..148
8.2.2 Stream Processing ..148
8.2.3 The Characteristics of Stream Data in IoT ..151
8.2.4 The General Architecture of a Stream-Processing

System in IoT ...153
8.3 Continuous Logic Processing System ..155
8.4 Challenges and Future Directions ..157

8.4.1 Scalability ..157
8.4.2 Robustness ...159
8.4.3 SLA-Compliance ...159
8.4.4 Load Balancing ..159

8.5 Conclusions ..159
References ..160

CHAPTER 9 A Framework for Distributed Data Analysis
for IoT ..163

M. Moshtaghi, C. Leckie, S. Karunasekera

9.1 Introduction ..163
9.2 Preliminaries ...163
9.3 Anomaly Detection ...165
9.4 Problem Statement and Definitions ..168

9.4.1 Hyperellipsoidal Anomaly Detection ..168
9.5 Distributed Anomaly Detection ..169

9.5.1 Clustering Ellipsoids ..169
9.5.2 Experimental Results ...172

9.6 Efficient Incremental Local Modeling ..173
9.6.1 Incremental Updates ..175
9.6.2 Implementation of Incremental Updates ...176
9.6.3 Experimental Results ...176

9.7 Summary ...178
References ..178

x Contents

PART IV IoT RELIABILITY, SECURITY, AND PRIVACY
CHAPTER 10 Security and Privacy in the Internet of Things183

V. Chellappan, K.M. Sivalingam

10.1 Concepts ...183
10.1.1 IoT Reference Model...184
10.1.2 IoT Security Threats ..185
10.1.3 IoT Security Requirements ..185

10.2 IoT Security Overview ...188
10.2.1 IoT Protocols ...188
10.2.2 Network and Transport Layer Challenges ...189
10.2.3 IoT Gateways and Security ...190
10.2.4 IoT Routing Attacks ..190
10.2.5 Bootstrapping and Authentication ...192
10.2.6 Authorization Mechanisms..192
10.2.7 IoT OAS ..193

10.3 Security Frameworks for IoT..193
10.3.1 Light Weight Cryptography ...194
10.3.2 Asymmetric LWC Algorithms ...195
10.3.3 Key Agreement, Distribution, and Bootstrapping195

10.4 Privacy in IoT Networks ...196
10.4.1 Secure Data Aggregation ...196
10.4.2 Enigma ..197
10.4.3 Zero Knowledge Protocols ..197
10.4.4 Privacy in Beacons ..197

10.5 Summary and Conclusions ...198
References ..199

CHAPTER 11 Internet of Things—Robustness and Reliability201

S. Sarkar

11.1 Introduction ..201
11.2 IoT Characteristics and Reliability Issues ..202

11.2.1 IoT Architecture in Brief ...202
11.2.2 Failure Scenarios ..204
11.2.3 Reliability Challenges ...205
11.2.4 Privacy and Reliability ..207
11.2.5 Interoperability of Devices ..207
11.2.6 Reliability Issues Due to Energy Constraint ...207

11.3 Addressing Reliability ..208
11.3.1 Nullifying Impact of Fault ...208

xiContents

11.3.2 Error Detection ..211
11.3.3 Fault Prevention ...213

References ..216

CHAPTER 12 Governing Internet of Things: Issues, Approaches,
and New Paradigms ..219

M. Maheswaran, S. Misra

12.1 Introduction ..219
12.2 Background and Related Work ...221

12.2.1 Overview ...221
12.2.2 Background ...221
12.2.3 Related Work ...226

12.3 IoT Governance ..228
12.3.1 Overview ...228
12.3.2 An Integrated Governance Idea ...229
12.3.3 Governance Models ...229
12.3.4 Important Governance Issues ..229
12.3.5 Existing Approaches ..230
12.3.6 New Paradigms ..233

12.4 Future Research Directions ..234
12.5 Conclusions ..235
References ..236

CHAPTER 13 TinyTO: Two-Way Authentication for Constrained
Devices in the Internet of Things ...239

C. Schmitt, M. Noack, B. Stiller

13.1 Introduction ..239
13.2 Security Aspects and Solutions ..241
13.3 Design Decisions ..243
13.4 TinyTO Protocol ...245

13.4.1 Possible Handshake Protocol Candidates..245
13.4.2 BCK with Preshared Keys for TinyTO ..246
13.4.3 Handshake Implementation ...249

13.5 Evaluation ...250
13.5.1 Memory Consumption ...250
13.5.2 Runtime Performance ..251
13.5.3 Energy Consumption ...252

13.6 Summary ...255
References ..255

xii Contents

CHAPTER 14 Obfuscation and Diversification for Securing
the Internet of Things (IoT)...259

S. Hosseinzadeh, S. Hyrynsalmi, V. Leppänen

14.1 Introduction ..259
14.2 Distinguishing Characteristics of IoT ...260

14.2.1 Operating Systems and Software in IoT ..260
14.2.2 IoT Network Stack and Access Protocols ...261
14.2.3 Security and Privacy in IoT ...264

14.3 Obfuscation and Diversification Techniques ..265
14.4 Enhancing the Security in IoT Using Obfuscation

and Diversification Techniques ...267
14.4.1 Motivations and Limitations of the Proposed Ideas268

14.5 Different Use-Case Scenarios on Software Diversification and Obfuscation270
14.6 Conclusions and Future Work ..271
References ..272

PART V IoT APPLICATIONS
CHAPTER 15 Applied Internet of Things ..277

S.J. Johnston, M. Apetroaie-Cristea, M. Scott, S.J. Cox

15.1 Introduction ..277
15.2 Scenario ..278
15.3 Architecture Overview..278

15.3.1 Sensor to Gateway Communication ..279
15.4 Sensors ..283
15.5 The Gateway ...286

15.5.1 Gateway Hardware ..287
15.5.2 Gateway Software ...289
15.5.3 Summary ...290

15.6 Data Transmission ..290
15.6.1 Advanced Message Queuing Protocol ..292
15.6.2 Backend Processing ...293
15.6.3 To Cloud or not to Cloud ...294

15.7 Conclusions ..296
References ..297

CHAPTER 16 Internet of Vehicles and Applications ..299

W. Wu, Z. Yang, K. Li

16.1 Basics of IoV ..299
16.1.1 Background and Concept ..299
16.1.2 Network Architecture ..299

xiiiContents

16.2 Characteristics and Challenges ...301
16.2.1 Characteristics of IoV ..301
16.2.2 Challenges in IoV ..302

16.3 Enabling Technologies ...303
16.3.1 MAC Protocols and Standards ..303
16.3.2 Routing Protocols ..306
16.3.3 Broadcasting and Information Dissemination ...307

16.4 Applications ..308
16.4.1 Driving Safety Related ..309
16.4.2 Transportation Efficiency Related ...310
16.4.3 Infotainment Services ..312

16.5 Summary and Future Directions ...313
References ..314

CHAPTER 17 Cloud-Based Smart-Facilities Management.......................................319

S. Majumdar

17.1 Introduction ..319
17.2 Background and Related Work ...320
17.3 A Cloud-Based Architecture for Smart-Facility Management321
17.4 Middleware Services ..323
17.5 Resource Management Techniques for Wireless Sensor Networks..........................325

17.5.1 Sensor Allocation ..326
17.5.2 Request Scheduling ...327

17.6 Resource Management Techniques for Supporting Data Analytics328
17.6.1 Streaming Data Analytics ..329

17.7 Case Study: Management of Sensor-Based Bridges ..330
17.8 Case Study: Research Collaboration Platform for Management

of Smart Machinery ..331
17.9 Conclusions ..336

17.9.1 Future Research Directions ...336
References ..337

Index ..341

Page left intentionally blank

xv

List of Contributors

D. An
Keimyung University, Dalgubeol-daero, Dalseo-gu, Daegu, South Korea

M. Apetroaie-Cristea
Faculty of Engineering and the Environment, University of Southampton, Southampton, United
Kingdom

D. Ban
Samsung Electronics, South Korea

B. Bardhi
Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy

R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and
Information Systems, The University of Melbourne, Australia; Manjrasoft Pty Ltd, Australia

R.N. Calheiros
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and
Information Systems, The University of Melbourne, Australia

V. Chellappan
Department of Computer Science and Engineering, Indian Institute of Technology Madras,
Chennai, India

A. Claudi
ADB Broadband S.p.A., Viale Sarca, Milano, Italy

S.J. Cox
Faculty of Engineering and the Environment, University of Southampton, Southampton, United
Kingdom

A.V. Dastjerdi
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing
and Information Systems, The University of Melbourne, Australia

C. Georgoulis
Athens Information Technology, Marousi, Greece

S.K. Ghosh
Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur,
India

H. Gupta
Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur,
India

S. Han
Samsung Electronics, South Korea

xvi List of Contributors

E. Heo
Samsung Electronics, South Korea

S. Hosseinzadeh
Department of Information Technology, University of Turku, Finland

S. Hyrynsalmi
Department of Information Technology, University of Turku, Finland

S.J. Johnston
Faculty of Engineering and the Environment, University of Southampton, Southampton, United
Kingdom

S. Karunasekera
Department of Computing and Information Systems, The University of Melbourne, Australia

N. Kefalakis
Athens Information Technology, Marousi, Greece

F. Khodadadi
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and
Information Systems, The University of Melbourne, Australia

J. Krishnamurthy
School of Computer Science, McGill University, Montreal, Quebec, Canada

C. Leckie
Department of Computing and Information Systems, The University of Melbourne, Australia

V. Leppänen
Department of Information Technology, University of Turku, Finland

K. Li
Department of Computer Science, State University of New York, NY, United States of America

X. Liu
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and
Information Systems, The University of Melbourne, Australia

M. Maheswaran
School of Computer Science, McGill University, Montreal, Quebec, Canada

S. Majumdar
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

S. Misra
Ericsson Canada, Montreal, Quebec, Canada

M. Moshtaghi
Department of Computing and Information Systems, The University of Melbourne, Australia

M. Noack
Communication Systems Group CSG, Department of Informatics IFI, University of Zurich, Zürich,
Switzerland

C.E. Palau
Distributed Real-Time Systems Research Group, Escuela Tecnica Superior de Ingenieros de
Telecomunicación at the Universitat Politecnica de Valencia, Spain

xviiList of Contributors

S. Petris
Athens Information Technology, Marousi, Greece

J.V. Pradilla
Escuela Técnica Superior de Ingenieros de Telecomunicación at the Universitat Politècnica de
Valencia, Spain

S. Sarkar
Department of CSIS, Birla Institute of Technology and Science Pilani, K.K.Birla Goa Campus,
Goa, India

C. Schmitt
Communication Systems Group CSG, Department of Informatics IFI, University of Zurich, Zürich,
Switzerland

M. Scott
Faculty of Engineering and the Environment, University of Southampton, Southampton, United
Kingdom

K.M. Sivalingam
Department of Computer Science and Engineering, Indian Institute of Technology Madras,
Chennai, India

J. Soldatos
Athens Information Technology, Marousi, Greece

L. Spalazzi
Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy

B. Stiller
Communication Systems Group CSG, Department of Informatics IFI, University of Zurich, Zürich,
Switzerland

G. Taccari
Par-Tec S.p.A., Milano, Italy

L. Taccari
Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy

W. Wu
Department of Computer Science, Sun Yat-sen University, Guangzhou, China

Z. Yang
Department of Computer Science, Sun Yat-sen University, Guangzhou, China

Y. Yoon
Hongik University, Wausan-ro, Mapo-gu, Seoul, South Korea

Page left intentionally blank

xix

Rajkumar Buyya is a Fellow of IEEE, Professor of Computer Science and
Software Engineering, and Director of the Cloud Computing and Dis-
tributed Systems (CLOUDS) laboratory at the University of Melbourne,
Australia. He is also serving as the founding CEO of Manjrasoft, a spin-
off company of the University, commercializing its innovations in Cloud
Computing. He has authored over 500 publications and 6 textbooks includ-
ing “Mastering Cloud Computing” published by McGraw Hill, China Ma-
chine Press, and Morgan Kaufmann for Indian, Chinese, and international
markets respectively. He is currently serving as the Co-Editor-in-Chief of
Journal of Software: Practice and Experience. For further information,
please visit www.buyya.com

Amir Vahid Dastjerdi is a research fellow with the Cloud Computing
and Distributed Systems (CLOUDS) laboratory at the University of
Melbourne, Australia. He received his PhD in Computer Science from
the University of Melbourne and his areas of interest include Internet of
Things, Big Data, and Cloud Computing.

About the Editors

http://www.buyya.com/

Page left intentionally blank

xxi

Preface

The Internet of Things (IoT) paradigm promises to make “things” including consumer electronic de-
vices or home appliances, such as medical devices, fridge, cameras, and sensors, part of the Internet
environment. This paradigm opens the doors to new innovations that will build novel type of interac-
tions among things and humans, and enables the realization of smart cities, infrastructures, and services
for enhancing the quality of life and utilization of resources.

IoT as an emerging paradigm supports integration, transfer, and analytics of data generated by
smart devices (eg, sensors). IoT envisions a new world of connected devices and humans in which the
quality of life is enhanced because management of city and its infrastructure is less cumbersome, health
services are conveniently accessible, and disaster recovery is more efficient. Based on bottom-up anal-
ysis for IoT applications, McKinsey estimates that the IoT will have a potential economic impact of
$11 trillion per year by 2025—which would be equivalent to about 11% of the world economy. They
also expect that one trillion IoT devices will be deployed by 2025. In majority of the IoT domains such
as infrastructure management and healthcare, the major role of IoT is the delivery of highly complex
knowledge-based and action-oriented applications in real-time.

To realize the full potential of the IoT paradigm, it is necessary to address several challenges and
develop suitable conceptual and technological solutions for tackling them. These include development of
scalable architecture, moving from closed systems to open systems, dealing with privacy and ethical is-
sues involved in data sensing; storage, processing, and actions; designing interaction protocols; autonom-
ic management; communication protocol; smart objects and service discovery; programming framework;
resource management; data and network management; power and energy management; and governance.

The primary purpose of this book is to capture the state-of-the-art in IoT, its applications, archi-
tectures, and technologies that address the abovementioned challenges. The book also aims to identify
potential research directions and technologies that will facilitate insight generation in various domains
from science, industry, business, and consumer applications. We expect the book to serve as a reference
for systems architects, practitioners, developers, researchers, and graduate-level students.

ORGANIZATION OF THE BOOK
This book contains chapters authored by several leading experts in the field of IoT. The book is pre-
sented in a coordinated and integrated manner starting with the fundamentals, and followed by the
technologies that implement them. The content of the book is organized into five parts:

1. IoT Ecosystem Concepts and Architectures
2. IoT Enablers and Solutions
3. IoT Data and Knowledge Management
4. IoT Reliability, Security, and Privacy
5. IoT Applications

Part I presents an overview of IoT and its related concepts and evolution through time. It throws
light upon different IoT architectures and their components and discusses emerging paradigms such as

xxii Preface

Fog computing. In addition, the essential element of a cloud computing infrastructure for IoT services
is discussed and a novel framework for collaborative computing between IoT devices and cloud is
presented.

Part II is dedicated to platforms and solutions supporting development and deployment of IoT ap-
plications. It covers embedded systems programming languages as they play an important role in the
development of IoT. Moreover, this part provides an elaborate introduction to message passing mecha-
nisms such as RPC, REST, and CoAP that are indispensable for distributed programming in IoT. Fur-
thermore, techniques for resource sharing and partitioning to enable multitenancy are explored. Three
basic virtualization techniques for embedded systems are considered: full virtualization, paravirtualiza-
tion (as instances of hardware-level virtualization), and containers (as instances of operating-system-
level virtualization). Besides, it introduces an architecture which utilizes both cloud and virtualization
for effective deployment of Cyber Physical Systems.

Part III focuses on data and knowledge management which have always been an integral part of IoT
applications. It explains how stream processing toolkits offer scalable and reliable solutions to handle
a large volume of data in motion and how they can be utilized in IoT environments. Furthermore, this
part introduces a framework for distributed data analysis (machine learning mechanism) based on the
core idea of Fog computing to use local resources to reduce the overhead of centralized data collection
and processing. It will explain how this can be achieved by learning local models of the data at the
nodes, which are then aggregated to construct a global model at a central node.

Part IV presents an argument for developing a governance framework for tackling the data con-
fidentiality, data integrity, and operation control issues faced by IoT. It outlines the organizational,
structural, regulatory, and legal issues that are commonly encountered in the IoT environment. In
addition, it provides a detailed overview of the security challenges related to the deployment of smart
objects. Security protocols at the network, transport, and application layers are discussed, together with
lightweight cryptographic algorithms to be used instead of conventional and demanding ones, in terms
of computational resources. Many of IoT applications are business critical, and require the underly-
ing technology to be dependable, that is, it must deliver its service even in the presence of failures.
Therefore, this part discusses the notion of reliability and recovery oriented systems in general and
then explains why this is important for an IoT-based system. A range of failure scenarios and reliability
challenges are narrated and tackled by failure-prevention and fault-tolerance approaches to make an
IoT-based system robust.

Part V introduces a number of applications that have been made feasible by the emergence of IoT.
Best practices for architecting IoT applications are covered, describing how to harness the power of
cutting-edge technologies for designing and building a weather station with over 10 sensors using a
variety of electronic interfaces connected to an embedded system gateway running Linux. This part
also introduces Internet of Vehicles (IoV) and its applications. It starts by presenting the background,
concept, and network architecture of IoV, and then analyzes the characteristics of IoV and correspond-
ingly new challenges in IoV research and development. Finally, this part discusses the role of IoT in
enabling efficient management of smart facilities and presents architecture for a cloud-based platform
for managing smart facilities and the underlying middleware services. Techniques for effective man-
agement of resources in sensor networks and in parallel systems performing data analytics on data
collected on a facility are discussed.

xxiii

Acknowledgments

First and foremost, we are grateful to all the contributing authors for their time, effort, and understand-
ing during the preparation of the book.

Raj would like to thank his family members, especially his wife, Smrithi and daughters, Soumya
and Radha Buyya, for their love, understanding, and support during the preparation of the book. Amir
would like to thank his wife Elly and daughter Diana.

Finally, we would like to thank the staff at Morgan Kauffman, particularly, Amy Invernizzi, Priya
Kumaraguruparan, Brian Romer, and Todd Green. They were wonderful to work with.

Rajkumar Buyya
The University of Melbourne and Manjrasoft Pty Ltd, Australia

Amir Vahid Dastjerdi
The University of Melbourne, Australia

Page left intentionally blank

PART

1 INTERNET OF THINGS: AN OVERVIEW 3

2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE FOR MANAGING IoT RESOURCES IN THE CLOUD 29

3 DEVICE/CLOUD COLLABORATION FRAMEWORK FOR INTELLIGENCE APPLICATIONS 49

4 FOG COMPUTING: PRINCIPLES, ARCHITECTURES, AND APPLICATIONS 61

IIoT ECOSYSTEM
CONCEPTS AND
ARCHITECTURES

Page left intentionally blank

3

CHAPTER

INTERNET OF THINGS:
AN OVERVIEW

F. Khodadadi*, A.V. Dastjerdi*, R. Buyya*,**
*Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing

and Information Systems, The University of Melbourne, Australia;**Manjrasoft Pty Ltd, Australia

1.1 INTRODUCTION
After four decades from the advent of Internet by ARPANET [1], the term “Internet” refers to the
vast category of applications and protocols built on top of sophisticated and interconnected computer
networks, serving billions of users around the world in 24/7 fashion. Indeed, we are at the beginning of
an emerging era where ubiquitous communication and connectivity is neither a dream nor a challenge
anymore. Subsequently, the focus has shifted toward a seamless integration of people and devices to
converge the physical realm with human-made virtual environments, creating the so- called Internet of
Things (IoT) utopia.

A closer look at this phenomenon reveals two important pillars of IoT: “Internet” and “Things” that
require more clarification. Although it seems that every object capable of connecting to the Internet
will fall into the “Things” category, this notation is used to encompass a more generic set of entities,
including smart devices, sensors, human beings, and any other object that is aware of its context and is
able to communicate with other entities, making it accessible at any time, anywhere. This implies that
objects are required to be accessible without any time or place restrictions.

Ubiquitous connectivity is a crucial requirement of IoT, and, to fulfill it, applications need to sup-
port a diverse set of devices and communication protocols, from tiny sensors capable of sensing and
reporting a desired factor, to powerful back-end servers that are utilized for data analysis and knowl-
edge extraction. This also requires integration of mobile devices, edge devices like routers and smart
hubs, and humans in the loop as controllers.

Initially, Radio-Frequency Identification (RFID) used to be the dominant technology behind IoT
development, but with further technological achievements, wireless sensor networks (WSN) and
Bluetooth-enabled devices augmented the mainstream adoption of the IoT trend. These technologies
and IoT applications have been extensively surveyed previously [2–5], however, less attention has been
given to unique characteristics and requirements of IoT, such as scalability, heterogeneity support, total
integration, and real-time query processing. To underscore these required advances, this chapter lists
IoT challenges and promising approaches by considering recent research and advances made in the IoT
ecosystem, as shown in Fig. 1.1. In addition, it discusses emerging solutions based on cloud-, fog-, and
mobile-computing facilities. Furthermore, the applicability and integration of cutting-edge approaches
like Software Defined Networking (SDN) and containers for embedded and constrained devices with
IoT are investigated.

1

4
C

H
A

P
TE

R
 1

 IN
TER

N
ET O

F TH
IN

G
S: A

N
 O

VER
VIEW

FIGURE 1.1 IoT Ecosystem

51.2 INTERNET OF THINGS DEFINITION EVOLUTION

1.2 INTERNET OF THINGS DEFINITION EVOLUTION
1.2.1 IoT EMERGENCE
Kevin Ashton is accredited for using the term “Internet of Things” for the first time during a presenta-
tion in 1999 on supply-chain management [6]. He believes the “things” aspect of the way we interact
and live within the physical world that surrounds us needs serious reconsideration, due to advances in
computing, Internet, and data-generation rate by smart devices. At the time, he was an executive direc-
tor at MIT’s Auto-ID Center, where he contributed to the extension of RFID applications into broader
domains, which built the foundation for the current IoT vision.

1.2.2 INTERNET OF EVERYTHING
Since then, many definitions for IoT have been presented, including the definition [7] that focuses
mostly on connectivity and sensory requirements for entities involved in typical IoT environments.
Whereas those definitions reflect IoT’s basic requirements, new IoT definitions give more value to the
need for ubiquitous and autonomous networks of objects where identification and service integration
have an important and inevitable role. For example, Internet of Everything (IoE) is used by Cisco to
refer to people, things, and places that can expose their services to other entities [8].

1.2.3 INDUSTRIAL IoT
Also referred to as Industrial Internet [9], Industrial IoT (IIoT) is another form of IoT applications
favored by big high-tech companies. The fact that machines can perform specific tasks such as data
acquisition and communication more accurately than humans has boosted IIoT’s adoption. Machine to
machine (M2M) communication, Big Data analysis, and machine learning techniques are major build-
ing blocks when it comes to the definition of IIoT. These data enable companies to detect and resolve
problems faster, thus resulting in overall money and time savings. For instance, in a manufacturing
company, IIoT can be used to efficiently track and manage the supply chain, perform quality control
and assurance, and lower the total energy consumption.

1.2.4 SMARTNESS IN IoT
Another characteristic of IoT, which is highlighted in recent definitions, is “smartness.” This distin-
guishes IoT from similar concepts such as sensor networks, and it can be further categorized into
“object smartness” and “network smartness.” A smart network is a communication infrastructure char-
acterized by the following functionalities:

• standardization and openness of the communication standards used, from layers interfacing with
the physical world (ie, tags and sensors), to the communication layers between nodes and with the
Internet;

• object addressability (direct IP address) and multifunctionality (ie, the possibility that a network
built for one application (eg, road-traffic monitoring) would be available for other purposes (eg,
environmental-pollution monitoring or traffic safety) [10].

6 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

1.2.5 MARKET SHARE
In addition, definitions draw special attention to the potential market of IoT with a fast growing rate, by
having a market value of $44.0 billion in 2011 [11]. According to a comprehensive market research con-
ducted by RnRMarketResearch [12] that includes current market size and future predictions, the IoT and
M2M market will be worth approximately $498.92 billion by 2019. Quoting from the same research, the
value of the IoT market is expected to hit $1423.09 billion by 2020, with Internet of Nano Things (IoNT)
playing a key role in the future market and holding a value of approximately $9.69 billion by 2020.

Besides all these fantastic and optimistic opportunities, for current IoT to reach the foreseen mar-
ket, various innovations and progress in different areas are required. Furthermore, cooperation and
information-sharing between leading companies in IoT, such as Microsoft, IBM, Google, Samsung,
Cisco, Intel, ARM, Fujitsu, Ecobee Inc., in addition to smaller businesses and start-ups, will boost IoT
adoption and market growth.

IoT growth rate with an estimated number of active devices until 2018 is depicted in Fig. 1.2 [13]. The
increase of investment in IoT by developed and developing countries hints at the gradual change in strate-
gy of governments by recognizing IoT’s impacts and trying to keep themselves updated as IoT gains mo-
mentum. For example, the IoT European Research Cluster (IERC) (http://www.rfid-in-action.eu/cerp/)
has conducted and supported several projects about fundamental IoT research by considering special
requirements from end-users and applications. As an example, the project named Internet of Things Ar-
chitecture (IoT-A) (http://www.iot-a.eu) aims at developing a reference architecture for specific types of
applications in IoT, and is discussed in more detail in Section 1.3. The UK government has also initiated
a 5 million project on innovations and recent technological advances in IoT [14]. Similarly, IBM in the
USA [15] has plans to spend billions of dollars on IoT research and its industrial applications. Singapore
has also announced its intention to be the first smart nation by investing in smart transport systems, de-
veloping the e-government structure, and using surveillance cameras and other sensory devices to obtain
data and extract information from them [16].

FIGURE 1.2 IoT Trend Forecast [13]

http://www.rfid-in-action.eu/cerp/
http://www.iot-a.eu/

71.3 IoT ARCHITECTURES

1.2.6 HUMAN IN THE LOOP
IoT is also identified as an enabler for machine-to-machine, human-to-machine, and human-with-
environment interactions. With the increase in the number of smart devices and the adoption of new
protocols such as IPv6, the trend of IoT is expected to shift toward the fusion of smart and autonomous
networks of Internet-capable objects equipped with the ubiquitous computing paradigm. Involving
human in the loop [17] of IoT offers numerous advantages to a wide range of applications, including
emergency management, healthcare, etc. Therefore, another essential role of IoT is to build a collab-
orative system that is capable of effectively responding to an event captured via sensors, by effective
discovery of crowds and also successful communication of information across discovered crowds of
different domains.

1.2.7 IMPROVING THE QUALITY OF LIFE
IoT is also recognized by the impact on quality of life and businesses [8], which can revolutionize
the way our medical systems and businesses operate by: (1) expanding the communication channel
between objects by providing a more integrated communication environment in which different sen-
sor data such as location, heartbeat, etc. can be measured and shared more easily. (2) Facilitating the
automation and control process, whereby administrators can manage each object’s status via remote
consoles; and (3) saving in the overall cost of implementation, deployment, and maintenance, by pro-
viding detailed measurements and the ability to check the status of devices remotely.

According to Google Trends, the word “IoT” is used more often than “Internet of Things” since
2004, followed by “Web of Things” and “Internet of Everything” as the most frequently used words.
Quoting the same reference, Singapore and India are the countries with the most regional interest in
IoT. This is aligned with the fact that India is estimated to be the world’s largest consumer of IoT de-
vices by 2020 [18].

1.3 IoT ARCHITECTURES
The building blocks of IoT are sensory devices, remote service invocation, communication networks,
and context-aware processing of events; these have been around for many years. However, what IoT
tries to picture is a unified network of smart objects and human beings responsible for operating them
(if needed), who are capable of universally and ubiquitously communicating with each other.

When talking about a distributed environment, interconnectivity among entities is a critical require-
ment, and IoT is a good example. A holistic system architecture for IoT needs to guarantee flawless
operation of its components (reliability is considered as the most import design factor in IoT) and link
the physical and virtual realms together. To achieve this, careful consideration is needed in design-
ing failure recovery and scalability. Additionally, since mobility and dynamic change of location has
become an integral part of IoT systems with the widespread use of smartphones, state-of-the-art archi-
tectures need to have a certain level of adaptability to properly handle dynamic interactions within the
whole ecosystem.

Reference architectures and models give a bird’s eye view of the whole underlying system, hence
their advantage over other architectures relies on providing a better and greater level of abstraction,
which consequently hides specific constraints and implementation details.

8 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

Several research groups have proposed reference architectures for IoT [19,20]. The IoT-A [19]
focuses on the development and validation of an integrated IoT network architecture and supporting
building blocks, with the objective to be “the European Lighthouse Integrated Project addressing the
Internet-of-Things Architecture.” IoT-i project, related to the previously mentioned IoT-A project,
focuses on the promotion of IoT solutions, catching requirements and interests. IoT-i aims to achieve
strategic objectives, such as: creating a joint strategic and technical vision for the IoT in Europe that
encompasses the currently fragmented sectors of the IoT domain holistically, and contributing to the
creation of an economically sustainable and socially acceptable environment in Europe for IoT tech-
nologies and respective R&D activities.

Fig. 1.3 depicts an outline of our extended version of a reference architecture for IoT [20]. Different
service and presentation layers are shown in this architecture. Service layers include event processing
and analytics, resource management and service discovery, as well as message aggregation and Enter-
prise Service Bus (ESB) services built on top of communication and physical layers. API management,
which is essential for defining and sharing system services and web-based dashboards (or equivalent
smartphone applications) for managing and accessing these APIs, are also included in the architecture.
Due to the importance of device management, security and privacy enforcement in different layers, and
the ability to uniquely identify objects and control their access level, these components are prestressed
independently in this architecture. These components and their related research projects are described
in more detail throughout this chapter.

1.3.1 SOA-BASED ARCHITECTURE
In IoT, service-oriented architecture (SOA) might be imperative for the service providers and users
[21,22]. SOA ensures the interoperability among the heterogeneous devices [23,24]. To clarify this,
let us consider a generic SOA consisting of four layers, with distinguished functionalities as follows:

• Sensing layer is integrated with available hardware objects to sense the status of things
• Network layer is the infrastructure to support over wireless or wired connections among things

FIGURE 1.3 A Reference Architecture for IoT

91.3 IoT ARCHITECTURES

• Service layer is to create and manage services required by users or applications
• Interfaces layer consists of the interaction methods with users or applications

Generally, in such architecture a complex system is divided into subsystems that are loosely cou-
pled and can be reused later (modular decomposability feature), hence providing an easy way to main-
tain the whole system by taking care of its individual components [25]. This can ensure that in the
case of a component failure the rest of the system (components) can still operate normally. This is of
immense value for effective design of an IoT application architecture, where reliability is the most
significant parameter.

SOA has been intensively used in WSN, due to its appropriate level of abstraction and advantages
pertaining to its modular design [26,27]. Bringing these benefits to IoT, SOA has the potential to aug-
ment the level of interoperability and scalability among the objects in IoT. Moreover, from the user’s
perspective, all services are abstracted into common sets, removing extra complexity for the user to
deal with different layers and protocols [28]. Additionally, the ability to build diverse and complex
services by composing different functions of the system (ie, modular composability) through service
composition suits the heterogeneous nature of IoT, where accomplishing each task requires a series of
service calls on all different entities spread across multiple locations [29].

1.3.2 API-ORIENTED ARCHITECTURE
Conventional approaches for developing service-oriented solutions use SOAP and Remote Method In-
vocation (RMI) as a means for describing, discovering, and calling services; however, due to overhead
and complexity imposed by these techniques, Web APIs and Representational State Transfer (REST)-
based methods were introduced as promising alternative solutions. The required resources range from
network bandwidth to computational and storage capacity, and are triggered by request–response
data conversions happening regularly during service calls. Lightweight data-exchange formats like
JSON can reduce the aforementioned overhead, especially for smart devices and sensors with a limited
amount of resources, by replacing large XML files used to describe services. This helps in using the
communication channel and processing the power of devices more efficiently.

Likewise, building APIs for IoT applications helps the service provider attract more customers
while focusing on the functionality of their products rather than on presentation. In addition, it is easier
to enable multitenancy by the security features of modern Web APIs such as OAuth, APIs which indeed
are capable of boosting an organization’s service exposition and commercialization. It also provides
more efficient service monitoring and pricing tools than previous service-oriented approaches [30].

To this end, in our previous research we have proposed Simurgh [31], which describes devices, sen-
sors, humans, and their available services using web API notation and API definition languages. Fur-
thermore, a two-phase discovery approach was proposed in the framework to find sensors that provide
desirable services and match certain features, like being in a specific location. Similarly, Elmangoush
et al. [32] proposed a service-broker layer (named FOKUS) that exposes a set of APIs for enabling
shared access to the OpenMTC core. Novel approaches for defining and sharing services in distributed
and multiagent environments like IoT can reduce the sophistication of service discovery in the applica-
tion development cycle and diminish service-call overhead in runtime.

Shifting from service delivery platforms (SDPs) toward web-based platforms, and the benefits of
doing so are discussed by Manzalini et al. [33]. Developers and business managers are advised to focus

10 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

on developing and sharing APIs from the early stage of their application development lifecycle, so that
eventually, by properly exposing data to other developers and end users, an open-data environment is
created that facilitates collaborative information gathering, sharing, and updating.

1.4 RESOURCE MANAGEMENT
Picturing IoT as a big graph with numerous nodes with different resource capacity, selecting and pro-
visioning the resources greatly impacts Quality of Service (QoS) of the IoT applications. Resource
management is very important in distributed systems and has been a subject of research for years.
What makes resource management more challenging for IoT relies on the heterogeneous and dynamic
nature of resources in IoT. Considering large-scale deployment of sensors for a smart city use-case, it is
obvious that an efficient resource management module needs considerable robustness, fault-tolerance,
scalability, energy efficiency, QoS, and SLA.

Resource management involves discovering and identifying all available resources, partitioning
them to maximize a utility function—which can be in terms of cost, energy, performance, etc., and,
finally, scheduling the tasks on available physical resources. Fig. 1.4 depicts the taxonomy of resource
management activities in IoT.

1.4.1 RESOURCE PARTITIONING
The first step for satisfying resource provisioning requirements in IoT is to efficiently partition the
resources and gain a higher utilization rate. This idea is vastly used in cloud computing via virtualiza-
tion techniques and commodity infrastructures, however, virtual machines are not the only method for
achieving the aforementioned goal. Since the hypervisor, that is responsible for managing interactions
between host and guest VMs, requires a considerable amount of memory and computational capacity,
this configuration is not suitable for IoT, where devices often have constrained memory and processing
power. To address these challenges, the concept of Containers has emerged as a new form of virtual-
ization technology that can match the demand of devices with limited resources. Docker (https://www.
docker.com/) and Rocket (https://github.com/coreos/rkt) are the two most famous container solutions.

Containers are able to provide portable and platform-independent environments for hosting the
applications and all their dependencies, configurations, and input/output settings. This significantly
reduces the burden of handling different platform-specific requirements when designing and develop-
ing applications, hence providing a convenient level of transparency for applications, architects, and
developers. In addition, containers are lightweight virtualization solutions that enable infrastructure
providers to efficiently utilize their hardware resources by eliminating the need for purchasing ex-
pensive hardware and virtualization software packages. Since containers, compared to VMs, require
considerably less spin-up time, they are ideal for distributed applications in IoT that need to scale up
within a short amount of time.

An extensive survey by Gu et al. [34] focuses on virtualization techniques proposed for embedded
systems and their efficiency for satisfying real-time application demands. After explaining numerous
Xen-based, KVM-based, and microkernel-based solutions that utilize processor architectures such as
ARM, authors argue that operating system virtualization techniques, known as container-based virtual-
ization, can bring advantages in terms of performance and security by sandboxing applications on top

https://www.docker.com/
https://www.docker.com/
https://github.com/coreos/rkt

111.4 RESOURCE MANAGEMENT

of a shared OS layer. Linux VServer [35], Linux Containers LXC, and OpenVZ are examples of using
OS virtualization in an embedded systems domain.

The concept of virtualized operating systems for constrained devices has been further extended
to smartphones by providing the means to run multiple Android operating systems on a single physi-
cal smartphone [36]. With respect to heterogeneity of devices in IoT, and the fact that many of them
can leverage virtualization to boost their utilization rate, task-grain scheduling, which considers indi-
vidual tasks within different containers and virtualized environments, can potentially challenge current
resource-management algorithms that view these layers as black box [34].

1.4.2 COMPUTATION OFFLOADING
Code offloading (computation offloading) [37] is another solution for addressing the limitation of
available resources in mobile and smart devices. The advantages of using code offloading translate to

FIGURE 1.4 Taxonomy of Resource Management in IoT

12 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

more efficient power management, fewer storage requirements, and higher application performance.
Several surveys about computation offloading have carefully studied its communication and execution
requirements, as well as its adaptation criteria [38–40], hence here we mention some of the approaches
that focus on efficient code segmentation and cloud computing.

Majority of code offloading techniques require the developers to manually annotate the functions
required to execute on another device [39]. However, using static code analyzers and dynamic code
parsers is an alternative approach that results in better adaptivity in case of network fluctuations and
increased latency [41]. Instead of using physical instances, ThinkAir [42] and COMET [43] leverage
virtual machines offered by IaaS cloud providers as offloading targets to boost both scalability and
elasticity. The proposed combination of VMs and mobile clouds can create a powerful environment for
sharing, synchronizing, and executing codes in different platforms.

1.4.3 IDENTIFICATION AND RESOURCE/SERVICE DISCOVERY
IoT has emerged as a great opportunity for industrial investigations, and is similarly pursued by research
communities, but current architectures proposed for creation of IoT environments lack support for an effi-
cient and standard way of service discovery, composition, and their integration in a scalable manner [44].

The discovery module in IoT is twofold. The first objective is to identify and locate the actual de-
vice, which can be achieved by storing and indexing metadata information about each object. The final
step is to discover the target service that needs to be invoked.

Lack of an effective discovery algorithm can result in execution delays, poor user experience, and
runtime failures. As discussed in Ref. [45], efficient algorithms that dynamically choose centralized
or flooding strategies can help minimize the consumed energy, although other parameters such as
mobility and latency should be factored in to offer a suitable solution for IoT, considering its dynamic
nature. In another approach within the fog-computing context [46], available resources like network
bandwidth and computational and storage-capacity metrics are converted to time resources, forming a
framework that facilitates resource sharing. Different parameters like energy-consumption level, price,
and availability of services need to be included in proposing solutions that aim to optimize resource
sharing within a heterogeneous pool of resources.

The Semantic Web of Things (SWoT) envisions advanced resource management and service dis-
covery for IoT by extending Semantic Web notation and blending it with IoT and Web of Things. To
achieve this, resources and their metadata are defined and annotated using standard ontology-definition
languages such as RDF and OWL. Additionally, search and manipulation of these metadata can be
done through query languages like SPARQL. Ruta et al. [47] have adopted the SSN-XG W3C ontology
to collect and annotate data from Semantic Sensor Networks (SSN); moreover, by extending the CoAP
protocol (discussed in Section 1.6) and CoRE Link Format that is used for resource discovery, their
proposed solution ranks resources based on partial or full request matching situations.

1.5 IoT DATA MANAGEMENT AND ANALYTICS
Although IoT is getting momentum to enable technology for creating a ubiquitous computing envi-
ronment, special considerations are required to process huge amounts of data originating from, and
circulating in, such a distributed and heterogeneous environment. To this extent, Big Data related

131.5 IoT DATA MANAGEMENT AND ANALYTICS

procedures, such as data acquisition, filtering, transmission, and analysis have to be updated to match
the requirements of the IoT data deluge.

Generally, Big Data is characterized by 3Vs, namely velocity, volume, and variety. Focusing on
either an individual or a combination of these three Big Data dimensions has led to the introduction of
different data-processing approaches. Batch Processing and Stream Processing are two major methods
used for data analysis. Lambda Architecture [48] is an exemplary framework proposed by Nathan Marz
to handle Big Data processing by focusing on multiapplication support, rather than on data-processing
techniques. It has three main layers that enable the framework to support easy extensibility through
extension points, scale-out capabilities, low-latency query processing, and the ability to tolerate human
and system faults. From a top-down view, the first layer is called “Batch Layer” and hosts the master
dataset and batch views where precomputed queries are stored. Next is the “Serving Layer,” which
adds dynamic query creation and execution to the batch views by indexing and storing them. Finally,
the “Speed Layer” captures and processes recent data for delay-sensitive queries.

Collecting and analyzing the data circulating in the IoT environment is where the real power of IoT
resides [49]. To this end, applications utilize pattern detection and data-mining techniques to extract
knowledge and make smarter decisions. One of the key limitations in using currently developed data-
mining algorithms lies in the inherent centralized nature of these algorithms, which drastically affects
their performance and makes them unsuitable for IoT environments that are meant to be geographical-
ly distributed and heterogeneous. Distributed anomaly-detection techniques that concurrently process
multiple streams of data to detect outliers have been well-studied in the literature [50]. A comprehen-
sive survey of data-mining research in IoT has been conducted by Tsai et al. [51] and includes details
about various classifications, clustering, knowledge discovery in databases (KDD), and pattern-mining
techniques. Nevertheless, new approaches like ellipsoidal neighborhood factor outlier [52] that can
be efficiently implemented on constrained devices are not fully benchmarked with respect to different
configurations of their host devices.

1.5.1 IoT AND THE CLOUD
Cloud computing, due to its on-demand processing and storage capabilities, can be used to analyze
data generated by IoT objects in batch or stream format. A pay-as-you-go model adopted by all cloud
providers has reduced the price of computing, data storage, and data analysis, creating a streamlined
process for building IoT applications. With cloud’s elasticity, distributed Stream Processing Engines
(SPEs) can implement important features such as fault-tolerance and autoscaling for bursty workloads.

IoT application development in clouds has been investigated in a body of research. Alam et al. [53]
proposed a framework that supports sensor-data aggregation in cloud-based IoT context. The frame-
work is SOA-based and event-driven, and defines benefits from a semantic layer that is responsible
for event processing and reasoning. Similarly, Li et al. [54] proposed a Platform as a Service (PaaS)
solution for deployment of IoT applications. The solution is multitenant, and users are provided with
a virtually isolated service that can be customized to their IoT devices while they share the underlying
cloud resources with other tenants.

Nastic et al. [55] proposed PatRICIA, a framework that provides a programming model for devel-
opment of IoT applications in the cloud. PatRICIA proposes a new abstraction layer that is based on
the concept of intent-based programming. Parwekar [56] discussed the importance of identity detection
devices in IoT, and proposed a service layer to demonstrate how a sample tag-based acquisition service

14 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

can be defined in the cloud. A simple architecture for integrating M2M platform, network, and data lay-
ers has also been proposed. Focusing on the data aspect of IoT, in our previous research we proposed
an architecture based on Aneka, by adding support for data filtering, multiple simultaneous data-source
selection, load balancing, and scheduling [57].

IoT applications can harness cloud services and use the available storage and computing resources
to meet their scalability and compute-intensive processing demands. Most of the current design ap-
proaches for integrating cloud with IoT are based on a three-tier architecture, where the bottom layer
consists of IoT devices, middle layer is the cloud provider, and top layer hosts different applications
and high-level protocols. However, using this approach to design and integrate cloud computing with
an IoT middleware limits the practicality and full utilization of cloud computing in scenarios where
minimizing end-to-end delay is the goal. For example, in online game streaming, where perceived delay
is an important factor for user satisfaction, a light and context-aware IoT middleware [58] that smartly
selects the nearest Content Distribution Network (CDN) can significantly reduce the overall jitter.

1.5.2 REAL-TIME ANALYTICS IN IoT AND FOG COMPUTING
Current data-analytics approaches mainly focus on dealing with Big Data, however, processing data
generated from millions of sensors and devices in real time is more challenging [59]. Proposed solu-
tions that only utilize cloud computing as a processing or storage backbone are not scalable and cannot
address the latency constraints of real-time applications. Real-time processing requirements and the
increase in computational power of edge devices such as routers, switches, and access points lead to
the emergence of the Edge Computing paradigm.

The Edge layer contains the devices that are in closer vicinity to the end user than the application
servers, and can include smartphones, smart TVs, network routers, and so forth. Processing and storage
capability of these devices can be utilized to extend the advantages of using cloud computing by creat-
ing another cloud, known as Edge Cloud, near application consumers, in order to: decrease network-
ing delays, save processing or storage cost, perform data aggregation, and prevent sensitive data from
leaving the local network [60].

Similarly, Fog Computing is a term coined by Salvatore Stolfo [61] and applies to an extension of
cloud computing that aims to keep the same features of Cloud, such as networking, computation, virtu-
alization, and storage, but also meets the requirements of applications that demand low latency, specific
QoS requirements, Service Level Agreement (SLA) considerations, or any combination of these [62].
Moreover, these extensions can ease application development for mobile applications, Geo-distributed
applications such as WSN, and large-scale systems used for monitoring and controlling other systems,
such as surveillance camera networks [63,64]. A comparison of Cloud and Fog features is presented in
Table 1.1 and Fig. 1.5 shows a general architecture for using cloud and fog computing together.

Stonebraker et al. [65] pointed out that the following requirements should be fulfilled in an efficient
real-time stream processing engine (SPE):

• Data fluidity, which refers to processing data on-the-fly without the need for costly data storage
• Handling out-of-order, missing, and delayed streams
• Having a repeatable and deterministic outcome after processing a series or bag of streams
• Keeping streaming and stored data integrated by using embedded database systems
• Assuring high availability, using real-time failover and hot backup mechanisms
• Supporting autoscaling and application partitioning

151.6 COMMUNICATION PROTOCOLS

To harness the full potential of Fog computing for applications demanding real-time processing,
researchers can look into necessary approaches and architectures to fulfill the aforementioned require-
ments.

1.6 COMMUNICATION PROTOCOLS
From the network and communication perspective, IoT can be viewed as an aggregation of different
networks, including mobile networks (3G, 4G, CDMA, etc.), WLANs, WSN, and Mobile Adhoc Net-
works (MANET) [21].

Seamless connectivity is a key requirement for IoT. Network-communication speed, reliability, and
connection durability will impact the overall IoT experience. With the emergence of high-speed mobile
networks like 5G, and the higher availability of local and urban network communication protocols such

FIGURE 1.5 Typical Fog Computing Architecture

Table 1.1 Cloud Versus Fog

Fog Cloud

Response time Low High

Availability Low High

Security level Medium to hard Easy to medium

Service focus Edge devices Network/enterprise core services

Cost for each device Low High

Dominant architecture Distributed Central/distributed

Main content generator—consumer Smart devices—humans and devices Humans—end devices

16 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

as Wi-Fi, Bluetooth, and WiMax, creating an interconnected network of objects seems feasible, how-
ever, dealing with different communication protocols that link these environments is still challenging.

1.6.1 NETWORK LAYER
Based on the device’s specification (memory, CPU, storage, battery life), the communication means and
protocols vary. However, the commonly used communication protocols and standards are listed below:

• RFID (eg, ISO 18000 series that comes with five classes and two generations, and covers both
active and passive RFID tags)

• IEEE 802.11 (WLAN), IEEE 802.15.4 (ZigBee), Near Field Communication (NFC), IEEE
802.15.1 (Bluetooth)

• Low-power Wireless Personal Area Networks (6LoWPAN) standards by IEFT
• M2M protocols such as MQTT and CoAP
• IP layer technologies, such as IPv4, IPv6, etc.

More elaboration on the aforementioned network-layer communication protocols is available in
Ref. [66], and a breakdown of layers in the IoT communication stack that these protocols will operate
is shown in Fig. 1.6.

1.6.2 TRANSPORT AND APPLICATION LAYER
Segmentation and poor coherency level, which are results of pushes from individual companies to
maximize their market share and revenue, has made developing IoT applications cumbersome. Uni-
versal applications that require one-time coding and can be executed on multiple devices are the most
efficient.

Protocols in IoT can be classified into three categories:

1. general-purpose protocols like IP and SNMP that have been around for many years and are vastly
used to manage, monitor, configure network devices, and establish communication links;

FIGURE 1.6 Use of Various Protocols in IoT Communication Layers

171.6 COMMUNICATION PROTOCOLS

2. lightweight protocols such as CoAP that have been developed to meet the requirements of
constrained devices with tiny hardware and limited resources;

3. device- or vendor-specific protocols and APIs that usually require a certain build environment and
toolset.

Selecting the right protocols at the development phase can be challenging and complex, as factors
such as future support, ease of implementation, and universal accessibility have to be considered.
Additionally, thinking of other aspects that will affect the final deployment and execution, like
required level of security and performance, will add to the sophistication of the protocol-selection
stage. Lack of standardization for particular applications and protocols is another factor that increases
the risk of poor protocol selection and strategic mistakes that are more expensive to fix in the future.
In order to enhance their adoption, it is important to make sure that communication protocols are well
documented; sensors and smart devices limit their usage in IoT.

Table 1.2 summarizes the characteristics of major communication protocols in IoT, while it also
compares their deployment topology and environments.

M2M communication aims to enable seamless integration of physical and virtual objects into larger
and geographically distributed enterprises by eliminating the need for human intervention. However,
to achieve this, the enforcement of harmony and collaboration among different communication layers
(physical, transport, presentation, application), as well as the approaches used by devices for message
storage and passing, can be challenging [67].

The publish/subscribe model is a common way of exchanging messages in distributed environ-
ments, and, because of simplicity, it has been adopted by popular M2M communication protocols
like MQTT. In dynamic scenarios, where nodes join or leave the network frequently and handoffs are
required to keep the connections alive, the publish/subscribe model is efficient. This is because of using
push-based notifications and maintaining queues for delayed delivery of messages.

Table 1.2 IoT Communication Protocols Comparison

Protocol
Name

Transport
Protocol Messaging Model Security Best-Use Cases Architecture

AMPQ TCP Publish/Subscribe High-Optional Enterprise
integration

P2P

CoAP UDP Request/Response Medium-Optional Utility field Tree

DDS UDP Publish/Subscribe and
Request/Response

High-Optional Military Bus

MQTT TCP Publish/Subscribe and
Request/Response

Medium-Optional IoT messaging Tree

UPnP — Publish/Subscribe and
Request/Response

None Consumer P2P

XMPP TCP Publish/Subscribe and
Request/Response

High-Compulsory Remote
management

Client server

ZeroMQ UDP Publish/Subscribe and
Request/Response

High-Optional CERN P2P

18 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

On the other hand, protocols like HTTP/REST and CoAP only support the request/response model,
in which a pulling mechanism is used to fetch new messages from the queue. CoAP also uses IPv6 and
6LoWPAN protocols in its network layer to handle node identification. Ongoing efforts are still being
made to merge these protocols and standardize them, as to support both publish/subscribe and request/
response models [68,69].

1.7 INTERNET OF THINGS APPLICATIONS
IoT promises an interconnected network of uniquely identifiable smart objects. This infrastructure creates
the necessary backbone for many interesting applications that require seamless connectivity and address-
ability between their components. The range of IoT application domain is wide and encapsulates applica-
tions from home automation to more sophisticated environments, such as smart cities and e-government.

Industry-focused applications include logistics and transportation [70], supply-chain management
[71], fleet management, aviation industry, and enterprise automation systems. Healthcare systems,
smart cities and buildings, social IoT, and smart shopping are a few examples of applications that try to
improve the daily life of individuals, as well as the whole society. Disaster management, environmental
monitoring, smart watering, and optimizing energy consumption through smart grids and smart meter-
ing are examples of applications that focus on environment.

In a broader magnitude, Gascon and Asin [72] classified 54 different IoT applications under the fol-
lowing categories: smart environment, smart cities, smart metering, smart water, security and emergen-
cies, retail, logistics, industrial control, smart agriculture, smart animal farming, domestic and home
automation, and eHealth. For further reference, Kim et al. [73] have surveyed and classified research
about IoT applications based on application domain and target user-groups.

In this section we present categorization of enterprise IoT applications based on their usage domain.
These applications usually fall into the following three categories: (1) monitoring and actuating, (2)
business process and data analysis, and (3) information gathering and collaborative consumption. The
rest of this section is dedicated to characteristics and requirements of each category.

1.7.1 MONITORING AND ACTUATING
Monitoring devices via APIs can be helpful in multiple domains. The APIs can report power usage,
equipment performance, and sensor status, and they can perform actions upon sending predefined com-
mands. Real-time applications can utilize these features to report current system status, whereas man-
agers and developers have the option to freely call these APIs without the need for physically accessing
the devices. Smart metering, and in a more distributed form, smart grids, can help in identifying pro-
duction or performance defects via application of anomaly detection on the collected data, and thus in-
crease the productivity. Likewise, incorporating IoT into buildings, or even in the construction process
[74], helps to move toward green solutions, save energy, and, consequently, minimize operation cost.

Another area that has been under focus by researchers is applications targeting smart homes that
mainly target energy-saving and monitoring. Home monitoring and control frameworks like the ones
developed by Verizon [75] and Boss support different communication protocols (Wi-Fi, Bluetooth,
etc.) to create an interconnected network of objects that can control desired parameters and change
configurations based on the user’s settings.

191.8 SECURITY

1.7.2 BUSINESS PROCESS AND DATA ANALYSIS
Riggins et al. [76] categorized the level of IoT adoption through Big Data analytics usage to the fol-
lowing categories:

• Society level, where IoT mainly influences and improves government services by reducing cost
and increasing government transparency and accountability

• Industry level, in which manufacturing, emergency services, retailing, and education have been
studied as examples

• Organizational level, in which IoT can bring the same type of benefits as those mentioned in
society level

• Individual level, where daily life improvements, individual efficiency, and productivity growth are
marked as IoT benefits

The ability to capture and store vast amounts of individual data has brought opportunities to health-
care applications. Patients’ data can be captured more frequently, using wearable technologies such as
smart watches, and can be published over the Internet. Later, data mining and machine-learning algo-
rithms are used to extract knowledge and patterns from the raw data and archive these records for future
reference. Healthsense eNeighbor developed by Humana is an example of a remote controlling system
that uses sensors deployed in houses to measure frequent daily activities and heath parameters of oc-
cupants. The collected data is then analyzed to forecast plausible risks and produce alerts to prevent
incidents [77]. Privacy and security challenges are two main barriers that refrain people and industries
from embracing IoT in the healthcare domain.

1.7.3 INFORMATION GATHERING AND COLLABORATIVE CONSUMPTION
Social Internet of Things (SIoT) is where IoT meets social networks, and, to be more precise, it prom-
ises to link objects around us with our social media and daily interaction with other people, making
them look smarter and more intractable. SIoT concept, motivated by famous social media like Face-
book and Twitter, has the potential to affect many people’s lifestyles. For example, a social network is
helpful for the evaluation of trust of crowds involved in an IoT process. Another advantage is using the
humans and their relationships, communities, and interactions for effective discovery of IoT services
and objects [78].

Table 1.3 contains a list of past and present open-source projects regarding IoT development and
its applications.

1.8 SECURITY
As adoption of IoT continues to grow, attackers and malicious users are shifting their target from servers
to end devices. There are several reasons for this. First, in terms of physical accessibility, smart devices
and sensors are far less protected than servers, and having physical access to a device gives the attackers
an advantage to penetrate with less hassle. Second, the number of devices that can be compromised are far
more than the number of servers. Moreover, since devices are closer to the users, security leads to leaking
of valuable information and has catastrophic consequences. Finally, due to heterogeneity and the distrib-
uted nature of IoT, the patching process is more consuming, thus opening the door for attackers [2,79].

20 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

In an IoT environment, resource constraints are the key barrier for implementing standard security
mechanisms in embedded devices. Furthermore, wireless communication used by the majority of sen-
sor networks is more vulnerable to eavesdropping and man-in-the-middle (proxy) attacks.

Cryptographic algorithms need considerable bandwidth and energy to provide end-to-end protection
against attacks on confidentiality and authenticity. Solutions have been proposed in RFID [80,81] and
WSN [82] context to overcome aforementioned issues by considering light cryptographic techniques.
With regard to constrained devices, symmetric cryptography is applied more often, as it requires fewer
resources; however, public key cryptography in the RFID context has also been investigated [83].

WSN with RFID tags and their corresponding readers were the first infrastructure for building IoT
environments, and, even now, many IoT applications in logistics, fleet management, controlled farm-
ing, and smart cities rely on these technologies. Nevertheless, these systems are not secure enough and
are vulnerable to various attacks from different layers. A survey by Borgohain et al. [84] investigates
these attacks, but less attention is given to solutions and counter-attack practices.

Table 1.3 List of IoT-Related Projects

Name of Project/Product Area of Focus

Tiny OS Operating System

Contiki Operating System

Mantis Operating System

Nano-RK Operating System

LiteOS Operating System

FreeRTOS Operating System

RIOT Operating System

Wit.AI Natural Language

Node-RED Visual Programming Toolkit

NetLab Visual Programming Toolkit

SensorML Modeling and Encoding

Extended Environments Markup Language (EEML) Modeling and Encoding

ProSyst Middleware

MundoCore Middleware

Gaia Middleware

Ubiware Middleware

SensorWare Middleware

SensorBus Middleware

OpenIoT Middleware and development platform

Koneki M2M Development Toolkit

MIHINI M2M Development Toolkit

211.10 PRIVACY

1.9 IDENTITY MANAGEMENT AND AUTHENTICATION
When talking about billions of connected devices, methods for identifying objects and setting their
access level play an important role in the whole ecosystem. Consumers, data sources, and service pro-
viders are essential parts of IoT; identity management and authentication methods applied to securely
connect these entities affect both the amount of time required to establish trust and the degree of confi-
dence [4]. IoT’s inherent features, such as dynamism and heterogeneity, require specific consideration
when defining security mechanisms. For instance, in Vehicular Networks (VANETs), cars regularly
enter and leave the network due to their movement speed; thus, not only do cars need to interact and
exchange data with access points and sensors along the road, but they also need to communicate with
each other and form a collaborative network.

Devices or objects in IoT have to be uniquely identified. There are various mechanisms, such as
ucode, which generate 128-bit codes and can be used in active and passive RFID tags, and also Electric
Product Code (EPC), which creates unique identifiers using Uniform Resource Identifier (URI) codes
[85,86]. Being able to globally and uniquely identify and locate objects decreases the complexity of
expanding the local environment and linking it with the global markets [84].

It is common for IoT sensors and smart devices to share the same geographical coordinates and
even fall into same type or group, hence identity management can be delegated to local identity man-
agement systems. In such environments, local identity management systems can enforce and monitor
access-control policies and establish trust negotiations with external partners. Zhou et al. [87] inves-
tigated security requirements for multimedia applications in IoT and proposed an architecture that
supports traffic analysis and scheduling, key management, watermarking, and authentication. Context-
aware pairing of devices and automatic authentication is another important requirement for dynamic
environments like IoT. Solutions that implement a zero-interaction approach [88] to create simpler
yet more secure procedures for creating a ubiquitous network of connected devices can considerably
impact IoT and its adoption.

1.10 PRIVACY
According to the report published by IDC and EMC on Dec. 2012 [89], the size of the digital universe
containing all created, replicated, and consumed digital data will be roughly doubled every 2 years,
hence, forecasting its size to be 40,000 exabytes by 2020, compared to 2,837 exabytes for 2012. Ad-
ditionally, sourced from statisticbrain.com, the average cost of storage for hard disks has dropped from
$437,500 per gigabyte in 1980 to $0.05 per gigabyte in 2013. These statistics show the importance of
data and the fact that it is easy and cheap to keep the user’s data for a long time and follow the guide-
lines for harvesting as much data as possible and using it when required.

Data generation rate has drastically increased in recent years, and consequently concerns about
secure data storage and access mechanisms has be taken more seriously. With sensors capable of sens-
ing different parameters, such as users’ location, heartbeat, and motion, data privacy will remain a hot
topic to ensure users have control over the data they share and the people who have access to these data.

In distributed environments like IoT, preserving privacy can be achieved by either following a cen-
tralized approach or by having each entity manage its own inbound/outbound data, a technique known
as privacy-by-design [84]. Considering the latter approach, since each entity can access only chunks

22 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

of data, distributed privacy- preserving algorithms have been developed to handle data scattering and
their corresponding privacy tags [90]. Privacy-enhancing technologies [91,92] are good candidates for
protecting collaborative protocols. In addition, to protect sensitive data, rapid deployable enterprise
solutions that leverage containers on top of virtual machines can be used [93].

1.11 STANDARDIZATION AND REGULATORY LIMITATIONS
Standardization and the limitation caused by regulatory policies have challenged the growth and adop-
tion rate of IoT and can be potential barriers in embracing the technology. Defining and broadcasting
standards will ease the burden of joining IoT environments for new users and providers. Additionally,
interoperability among different components, service providers, and even end users will be greatly
influenced in a positive way, if pervasive standards are introduced and employed in IoT [94].

Even though more organizations and industries make themselves ready to embrace and incorporate
IoT, increase in IoT growth rate will cause difficulties for standardization. Strict regulations about ac-
cessing radio frequency levels, creating a sufficient level of interoperability among different devices,
authentication, identification, authorization, and communication protocols are all open challenges fac-
ing IoT standardization. Table 1.4 contains a list of organizations that have worked toward standard-
izing technologies either used within IoT context or those specifically created for IoT.

1.12 CONCLUSIONS
IoT has emerged as a new paradigm aimed at providing solutions for integration, communication, data
consumption, and analysis of smart devices. To this end, connectivity, interoperability, and integration
are inevitable parts of IoT communication systems. Whereas IoT, due to its highly distributed and

Table 1.4 IoT Standards

Organization Name Outcome

Internet of Things Global Standards Initiative (IoT-GSI) JCA-IoT

Open Source Internet of Things (OSIoT) Open Horizontal Platform

IEEE 802.15.4 standards, developing a reference architecture

Internet Engineering Task Force (IETF) Constrained RESTful Environments (CoRE),
6LOWPAN, Routing Over Low power and Lossy
networks (ROLL), IPv6

The World Wide Web Consortium (W3C) Semantic Sensor Net Ontology, Web Socket, Web of
Things

XMPP Standards Foundation XMPP

Eclipse Foundation Paho project, Ponte project, Kura, Mihini/M3DA,
Concierge

Organization for the Advancement of Structured
Information Standards

MQTT, AMPQ

23REFERENCES

heterogeneous nature, is comprised of many different components and aspects, providing solutions to
integrate this environment and hide its complexity from the user side is inevitable. Novel approaches
that utilize SOA architecture and API definition languages to service exposition, discovery, and com-
position will have a huge impact in adoption and proliferation of the future IoT vision.

In this chapter, different building blocks of IoT, such as sensors and smart devices, M2M commu-
nication, and the role of humans in future IoT scenarios are elaborated upon and investigated. Many
challenges ranging from communication requirements to middleware development still remain open
and need further investigation. We have highlighted these shortcomings, have provided typical solu-
tions, and have drawn guidelines for future research in this area.

REFERENCES
[1] Hafner K, Lyon M. Where wizards stay up late: the origins of the Internet. New York: Simon and Schuster;

1998.
[2] Atzori L, Iera A, Morabito G. The internet of things: a survey. Comput Netw 2010;54(15):2787–805.
[3] Li S, Xu LD, Zhao S. The internet of things: a survey. Inform Syst Front 2014;17(2):243–59.
[4] Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Context aware computing for the internet of things: a

survey. Commun Surv Tutorials IEEE 2014;16(1):414–54.
[5] Miorandi D, Sicari S, De Pellegrini F, Chlamtac I. Internet of things: vision, applications and research

challenges. Ad Hoc Netw 2012;10(7):1497–516.
[6] Ashton K. That ‘internet of things’ thing. RFiD J 2009;22(7):97–114.
[7] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and

future directions. Future Gener Comput Syst 2013;29(7):1645–60.
[8] L.R. LLC. An introduction to the Internet of Things (IoT). http://www.cisco.com/c/dam/en_us/solutions/

trends/iot/introduction_to_IoT_november.pdf; 2013.
[9] Vilajosana X, et al. OpenMote: Open-source prototyping platform for the industrial IoT. In: Ad hoc networks.

Springer International Publishing; 2015. p. 211–222.
[10] Da Xu L, He W, Li S. Internet of Things in industries: a survey. Ind Inform IEEE Trans 2014;10(4):2233–43.
[11] M.R. Group. Internet of Things (IoT) & M2M communication market—advanced technologies, future cities

& adoption trends, roadmaps & worldwide forecasts 2012–2017. http://www.prnewswire.com/news-releases/
internet-of-things-iot--machine-to-machine-m2m-communication-market---advanced-technologies-future-
cities--adoption-trends-roadmaps--worldwide-forecasts-2012---2017-216448061.html; 2012.

[12] RnRMarketResearch. Internet of Things technology and application market by communication technology
(ZigBee, Z-Wave, Bluetooth, Wi-Fi, NFC, RFID), application vertical (building automation, consumer,
wearable electronics, industrial, automotive & transportation, agriculture) & geography—global trends &
forecasts to 2014–2020. http://www.marketsandmarkets.com/Market-Reports/iot-application-technology-
market-258239167.html; 2014.

[13] BI Intelligence. Research for the digital age. https://intelligence.businessinsider.com/; 2015.
[14] Wang F, Hu L, Zhou J, Zhao K. A survey from the perspective of evolutionary process in the Internet of

Things. Int J Distrib Sens Netw 2015;2015:9.
[15] Ortutay B. IBM to invest $3-billion in new ‘Internet of Things’ unit. http://www.reuters.com/article/us-ibm-

investment-idUSKBN0MR0BS20150331; 2015.
[16] Yu E. Singapore unveils plan in push to become smart nation. http://www.zdnet.com/article/singapore-

unveils-plan-in-push-to-become-smart-nation/; 2014.
[17] Dastjerdi AV, Sharifi M, Buyya R. On application of ontology and consensus theory to human-centric IoT: an

emergency management case study. In: Proceedings of the eighth IEEE international conference on Internet
of Things (iThings 2015, IEEE CS Press, USA), Sydney, Australia, Dec. 11–13, 2015.

http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0040
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/introduction_to_IoT_november.pdf
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/introduction_to_IoT_november.pdf
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0045
http://www.prnewswire.com/news-releases/internet-of-things-iot--machine-to-machine-m2m-communication-market---advanced-technologies-future-cities--adoption-trends-roadmaps--worldwide-forecasts-2012---2017-216448061.html
http://www.prnewswire.com/news-releases/internet-of-things-iot--machine-to-machine-m2m-communication-market---advanced-technologies-future-cities--adoption-trends-roadmaps--worldwide-forecasts-2012---2017-216448061.html
http://www.prnewswire.com/news-releases/internet-of-things-iot--machine-to-machine-m2m-communication-market---advanced-technologies-future-cities--adoption-trends-roadmaps--worldwide-forecasts-2012---2017-216448061.html
http://www.marketsandmarkets.com/Market-Reports/iot-application-technology-market-258239167.html
http://www.marketsandmarkets.com/Market-Reports/iot-application-technology-market-258239167.html
https://intelligence.businessinsider.com/
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0050
http://www.reuters.com/article/us-ibm-investment-idUSKBN0MR0BS20150331
http://www.reuters.com/article/us-ibm-investment-idUSKBN0MR0BS20150331
http://www.zdnet.com/article/singapore-unveils-plan-in-push-to-become-smart-nation/
http://www.zdnet.com/article/singapore-unveils-plan-in-push-to-become-smart-nation/

24 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

[18] Ryan A. India to be the largest Internet of Things market by 2020. http://www.metering.com/india-to-be-the-
largest-internet-of-things-market-by-2020/; 2015.

[19] IoT-A, IoT-A Internet of Things—architecture. http://www.iot-a.eu/; 2012.
[20] WSO2, A reference architecture for the Internet of Things. http://wso2.com/wso2_resources/wso2_

whitepaper_a-reference-architecture-for-the-internet-of-things.pdf; 2014.
[21] Castellani A, Bui N, Casari P, Rossi M, Shelby Z, Zorzi M. Architecture and protocols for the internet of

things: a case study. In: Eighth IEEE international conference on pervasive computing and communications
workshops (PERCOM workshops); 2010. p. 678–683.

[22] Ishaq I, Hoebeke J, Rossey J, De Poorter E, Moerman I, Demeester P. Enabling the web of things: facilitating
deployment, discovery and resource access to IoT objects using embedded web services. Int J Web Grid Serv
2014;10(2):218–43.

[23] Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D. Interacting with the SOA-based Internet of Things:
discovery, query, selection, and on-demand provisioning of web services. IEEE Trans Serv Comput
2010;3(3):223–35.

[24] Stirbu V. Towards a restful plug and play experience in the web of things, In: IEEE international conference
on semantic computing; 2008. p. 512–517.

[25] Guinard D, Trifa V, Mattern F, Wilde E. From the internet of things to the web of things: resource-oriented
architecture and best practices. Architecting the Internet of Things. Berlin Heidelberg: Springer; 2011.
pp. 97–129.

[26] Li B, Yu J. Research and application on the smart home based on component technologies and Internet of
Things. Procedia Eng 2011;15:2087–92.

[27] Su K, Li J, Fu H. Smart city and the applications. In: International conference on electronics, communications
and control (ICECC); 2011. p. 1028–1031.

[28] Dohr A, Modre-Opsrian R, Drobics M, Hayn D, Schreier G. The internet of things for ambient assisted living.
In: Seventh international conference on information technology: new generations (ITNG); 2010. p. 804–809.

[29] Valipour MH, Amirzafari B, Maleki KN, Daneshpour N. A brief survey of software architecture concepts and
service oriented architecture. In: Second IEEE international conference on computer science and information
technology (ICCSIT 2009); 2009. p. 34–38.

[30] Datta SK, Bonnet C, Nikaein N. An iot gateway centric architecture to provide novel m2m services. In: IEEE
world forum on Internet of Things (WF-IoT); 2014. p. 514–519.

[31] Khodadadi F, Dastjerdi AV, Buyya R. Simurgh: a framework for effective discovery, programming, and
integration of services exposed in IoT. In: International conference on recent advances in Internet of Things
(RIoT); 2015. p. 1–6.

[32] Elmangoush A, Magedanz T, Blotny A, Blum N. Design of RESTful APIs for M2M services. In: Sixteenth
international conference on intelligence in next generation networks (ICIN); 2012. p. 50–56.

[33] Manzalini A, Minerva R, Moiso C. If the Web is the platform, then what is the SDP? In: Thirteenth international
conference on intelligence in next generation networks (ICIN 2009); 2009. p. 1–6.

[34] Gu Z, Zhao Q. A state-of-the-art survey on real-time issues in embedded systems virtualization; 2012.
[35] Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L. Container-based operating system virtualization:

a scalable, high-performance alternative to hypervisors. ACM SIGOPS Oper Syst Rev 2007;41(3):
275–87.

[36] Andrus J, Dall C, Hof AV, Laadan O, Nieh J. Cells: a virtual mobile smartphone architecture. In: Proceedings
of the twenty-third ACM symposium on operating systems principles; 2011. p. 173–187.

[37] Zhou B, Dastjerdi AV, Calheiros RN, Srirama SN, Buyya R. A context sensitive offloading scheme for mobile
cloud computing service. In: Proceedings of the eighth IEEE international conference on cloud computing
(Cloud 2015, IEEE CS Press, USA), New York, USA, June 27–July 2, 2015.

[38] Enzai M, Idawati N, Tang M, A taxonomy of computation offloading in mobile cloud computing. In: Second
IEEE international conference on mobile cloud computing, services, and engineering (MobileCloud);
2014, p. 19–28.

http://www.metering.com/india-to-be-the-largest-internet-of-things-market-by-2020/
http://www.metering.com/india-to-be-the-largest-internet-of-things-market-by-2020/
http://www.iot-a.eu/
http://wso2.com/wso2_resources/wso2_whitepaper_a-reference-architecture-for-the-internet-of-things.pdf
http://wso2.com/wso2_resources/wso2_whitepaper_a-reference-architecture-for-the-internet-of-things.pdf
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0075

25REFERENCES

[39] Cuervo E, Balasubramanian A, Cho D, Wolman A, Saroiu S, Chandra R, Bahl P. MAUI: making smartphones
last longer with code offload. In: Proceedings of the eighth international conference on mobile systems,
applications, and services; 2010. p. 49–62.

[40] Satyanarayanan M, Bahl P, Caceres R, Davies N. The case for vm-based cloudlets in mobile computing.
Pervasive Comput IEEE 2009;8(4):14–23.

[41] Chun B-G, Ihm S, Maniatis P, Naik M, Patti A. Clonecloud: elastic execution between mobile device and
cloud. In: Proceedings of the sixth conference on computer systems; 2011, p. 301–314.

[42] Kosta S, Aucinas A, Hui P, Mortier R, Zhang X. Thinkair: dynamic resource allocation and parallel execution
in the cloud for mobile code offloading. In: INFOCOM, 2012 proceedings IEEE; 2012. p. 945–953.

[43] Gordon MS, Jamshidi DA, Mahlke SA, Mao ZM, and Chen X. COMET: code offload by migrating execution
transparently. In: OSDI; 2012. p. 93–106.

[44] Wei Q, Jin Z. Service discovery for internet of things: a context-awareness perspective. In: Proceedings of the
fourth Asia-Pacific symposium on Internetware; 2012. p. 25.

[45] Liu W, Nishio T, Shinkuma R, Takahashi T. Adaptive resource discovery in mobile cloud computing. Comput
Commun 2014;50:119–29.

[46] Nishio T, Shinkuma R, Takahashi T, and Mandayam NB. Service-oriented heterogeneous resource sharing
for optimizing service latency in mobile cloud. In: Proceedings of the first international workshop on mobile
cloud computing & networking; 2013. p. 19–26.

[47] Ruta M, Scioscia F, Pinto A, Di Sciascio E, Gramegna F, Ieva S, Loseto G. Resource annotation, dissemination
and discovery in the Semantic Web of Things: a CoAP-based framework. In: Green computing and
communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE international
conference on Cyber, Physical and Social Computing; 2013. p. 527–534.

[48] Nathan Marz JW. Big Data: principles and best practices of scalable realtime data systems. Greenwich, CT:
Manning Publications; 2013.

[49] Misra P, Simmhan Y, Warrior J. Towards a practical architecture for the next generation Internet of Things,
arXiv Prepr. arXiv1502.00797; 2015.

[50] Moshtaghi M, Bezdek JC, Havens TC, Leckie C, Karunasekera S, Rajasegarar S, Palaniswami M. Streaming
analysis in wireless sensor networks. Wirel Commun Mob Comput 2014;14(9):905–21.

[51] Tsai C-W, Lai C-F, Chiang M-C, Yang LT. Data mining for internet of things: a survey. Commun Surv
Tutorials IEEE 2014;16(1):77–97.

[52] Rajasegarar S, Gluhak A, Ali Imran M, Nati M, Moshtaghi M, Leckie C, Palaniswami M. Ellipsoidal
neighbourhood outlier factor for distributed anomaly detection in resource constrained networks. Pattern
Recognit 2014;47(9):2867–79.

[53] Alam S, Chowdhury MMR, Noll J. SenaaS: an event-driven sensor virtualization approach for Internet of
Things cloud. In: Proceedings of the 2010 IEEE international conference on networked embedded systems
for enterprise applications (NESEA); 2010.

[54] Li F, Vogler M, Claessens M, Dustdar S. Efficient and scalable IoT service delivery on cloud. In: Proceedings
of the sixth international conference on cloud computing (CLOUD); 2013.

[55] Nastic S, Sehic S, Vogler M, Truong H-L, Dustdar S. PatRICIA— a novel programming model for IoT
applications on cloud platforms. In: Proceedings of the sixth international conference on service-oriented
computing and applications (SOCA); 2013.

[56] Parwekar P. From Internet of Things towards cloud of things. In: Second international conference on computer
and communication technology (ICCCT); 2011, p. 329–333.

[57] Khodadadi F, Calheiros RN, Buyya R. A data-centric framework for development and deployment of Internet
of Things applications in clouds. In: IEEE tenth international conference on intelligent sensors, sensor
networks and information processing (ISSNIP); 2015. p. 1–6.

[58] Medvedev A, Zaslavsky A, Grudinin V, Khoruzhnikov S. Citywatcher: annotating and searching video data
streams for smart cities applications. Internet of Things, smart spaces, and next generation networks and
systems. Springer International Publishing; 2014. pp. 144–155.

http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0105

26 CHAPTER 1 INTERNET OF THINGS: AN OVERVIEW

[59] Belli L, Cirani S, Ferrari G, Melegari L, Picone M. A graph-based cloud architecture for big stream
realtime applications in the internet of things. Advances in service-oriented and cloud computing. Springer
International Publishing; 2014. pp. 91–105.

[60] Bonomi F, Milito R, Natarajan P, Zhu J. Fog computing: a platform for internet of things and analytics. Big
Data and Internet of Things: a roadmap for smart environments. Springer International Publishing; 2014.
pp. 169–186.

[61] Shachtman N. Feds look to fight leaks with fog of disinformation; 2012.
[62] Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the internet of things In: Proceedings

of the first edition of the MCC workshop on mobile cloud computing; 2012. p. 13–16.
[63] Vaquero LM, Rodero-Merino L. Finding your way in the fog: towards a comprehensive definition of fog

computing. ACM SIGCOMM Comput Commun Rev 2014;44(5):27–32.
[64] Aazam M, Khan I, Alsaffar AA, Huh E-N. Cloud of Things: integrating Internet of Things and cloud

computing and the issues involved. In: Eleventh international Bhurban conference on applied sciences and
technology (IBCAST); 2014. p. 414–419.

[65] Stonebraker M, Çetintemel U, Zdonik S. The 8 requirements of real-time stream processing. ACM SIGMOD
Rec 2005;34(4):42–7.

[66] Rimal BP, Choi E, Lumb I. A taxonomy and survey of cloud computing systems. In: Fifth international joint
conference on INC, IMS and IDC. NCM’09; 2009. p. 44–51.

[67] Elmangoush A, Steinke R, Magedanz T, Corici AA, Bourreau A, Al-Hezmi A. Application-derived
communication protocol selection in M2M platforms for smart cities. In: Eighteenth international conference
on intelligence in next generation networks (ICIN); 2015. p. 76–82.

[68] Teklemariam GK, Hoebeke J, Moerman I, Demeester P. Facilitating the creation of IoT applications through
conditional observations in CoAP. EURASIP J Wirel Commun Netw 2013;2013(1):1–19.

[69] Kovatsch M, Lanter M, Shelby Z. Californium: scalable cloud services for the internet of things with CoAP.
In: Proceedings of the fourth international conference on the Internet of Things (IoT 2014); 2014.

[70] Yuqiang C, Jianlan G, Xuanzi H. The research of Internet of Things supporting technologies which face
the logistics industry. In: International conference on computational intelligence and security (CIS); 2010.
p. 659–663.

[71] Chaves LWF, Decker C. A survey on organic smart labels for the internet-of-things. In: Seventh international
conference on networked sensing systems (INSS); 2010. p. 161–164.

[72] Gascon D, Asin A. 50 sensor applications for a smarter world. http://www.libelium.com/top_50_iot_sensor_
applications_ranking; 2015.

[73] Kim S, Kim S. A multi-criteria approach toward discovering killer IoT application in Korea. Technol Forecast
Soc 2015;102:143–55.

[74] Moreno M, Úbeda B, Skarmeta AF, Zamora MA. How can we tackle energy efficiency in IoT based smart
buildings? Sensors 2014;14(6):9582–614.

[75] Lee I, Lee K. The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus
Horiz 2015;58(4):431–40.

[76] Riggins FJ, Wamba SF. Research directions on the adoption, usage, and impact of the Internet of Things
through the use of Big Data analytics. In: Fourty-eighth Hawaii international conference on system sciences
(HICSS); 2015. p. 1531–1540.

[77] Fox GC, Kamburugamuve S, Hartman RD. Architecture and measured characteristics of a cloud based internet
of things. In: International conference on collaboration technologies and systems (CTS); 2012. p. 6–12.

[78] Atzori Luigi, et al. The social internet of things (SIoT)—when social networks meet the internet of things:
concept, architecture and network characterization. Comput Netw 2012;56(16):3594–608.

[79] Babar S, Mahalle P, Stango A, Prasad N, Prasad R. Proposed security model and threat taxonomy for the
internet of things (IoT). Recent trends in network security and applications. Springer Berlin Heidelberg;
2010. pp. 420–429.

http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0115
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0115
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0115
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0120
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0120
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0125
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0125
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0130
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0130
http://www.libelium.com/top_50_iot_sensor_applications_ranking
http://www.libelium.com/top_50_iot_sensor_applications_ranking
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref9135
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref9135
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0135
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0135
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0140
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0140
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0145
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0145
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref9160
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref9160
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref9160

27REFERENCES

[80] Poschmann A, Leander G, Schramm K, Paar C. New light-weight crypto algorithms for RFID. In: IEEE
international symposium on circuits and systems (ISCAS 2007); 2007, p. 1843–1846.

[81] Fu L, Shen X, Zhu L, Wang J. A low-cost UHF RFID tag chip with AES cryptography engine. Secur Commun
Netw 2014;7(2):365–75.

[82] Ebrahim M, Chong CW. Secure force: a low-complexity cryptographic algorithm for Wireless Sensor Network
(WSN). In: IEEE international conference on control system, computing and engineering (ICCSCE); 2013. p.
557–562.

[83] Arbit A, Livne Y, Oren Y, Wool A. Implementing public-key cryptography on passive RFID tags is practical.
Int J Inf Secur 2014;14(1):85–99.

[84] Borgohain T, Kumar U, Sanyal S. Survey of security and privacy issues of Internet of Things. arXiv Prepr.
arXiv1501.02211; 2015.

[85] Mainetti L, Patrono L, Vilei A. Evolution of wireless sensor networks towards the internet of things: a survey.
In: Nineteenth international conference on software, telecommunications and computer networks (SoftCOM);
2011. p. 1–6.

[86] Zorzi M, Gluhak A, Lange S, Bassi A. From today’s intranet of things to a future internet of things: a wireless-
and mobility-related view. Wirel Commun IEEE 2010;17(6):44–51.

[87] Zhou L, Chao H-C. Multimedia traffic security architecture for the internet of things. IEEE Netw
2011;25(3):35–40.

[88] Miettinen M, Asokan N, Nguyen TD, Sadeghi A-R, Sobhani M. Context-based zero-interaction pairing and
key evolution for advanced personal devices. In: Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security; 2014. p. 880–891.

[89] McLellan C. Storage in 2014: an overview. http://www.zdnet.com/article/storage-in-2014-an-overview/;
2014.

[90] Aggarwal CC, Philip SY. A general survey of privacy-preserving data mining models and algorithms. USA:
Springer; 2008.

[91] Argyrakis J, Gritzalis S, Kioulafas C. Privacy enhancing technologies: a review. Electronic government.
Berlin Heidelberg: Springer; 2003. pp. 282–287.

[92] Oleshchuk V. Internet of things and privacy preserving technologies. In: First International Conference on
Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems
Technology; 2009. p. 336–340.

[93] Roman R, Zhou J, Lopez J. On the features and challenges of security and privacy in distributed internet of
things. Comput Netw 2013;57(10):2266–79.

[94] Jiang H, Zhao S, Zhang Y, Chen Y. The cooperative effect between technology standardization and industrial
technology innovation based on Newtonian mechanics. Inf Technol Manag 2012;13(4):251–62.

http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0160
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0160
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0165
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0165
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0170
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0170
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0175
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0175
http://www.zdnet.com/article/storage-in-2014-an-overview/
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0185
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0185
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref9190
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref9190
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0190
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0190
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0195
http://refhub.elsevier.com/B978-0-12-805395-9.00001-0/ref0195

Page left intentionally blank

29

CHAPTER

OPEN SOURCE SEMANTIC
WEB INFRASTRUCTURE FOR
MANAGING IoT RESOURCES
IN THE CLOUD

N. Kefalakis, S. Petris, C. Georgoulis, J. Soldatos
Athens Information Technology, Marousi, Greece

2.1 INTRODUCTION
Cloud computing and Internet of Things (IoT) are nowadays two of the most prominent and popular
ICT paradigms that are expected to shape the next era of computing. The cloud computing paradigm
[1] realizes and promotes the delivery of hardware and software resources over the Internet, according
to an on-demand utility-based model. Depending on the type of computing resources delivered via the
cloud, cloud services take different forms, such as Infrastructure as a service (IaaS), Platform as a ser-
vice (PaaS), Software as a service (SaaS), Storage as a service (STaaS), and more. These services hold
to promise to deliver increased reliability, security, high availability, and improved QoS at an overall
lower total cost of ownership. At the same time, the IoT paradigm relies on the identification and use
of a large number of heterogeneous physical and virtual objects (ie, both physical and virtual repre-
sentations), which are connected to the Internet [2]. IoT enables the communication between different
objects, as well as the in-context invocation of their capabilities (services) toward added-value applica-
tions. Early IoT applications are based on Radio Frequency Identification (RFID) and Wireless Sensor
Network (WSN) technologies, and deliver tangible benefits in several areas, including manufacturing,
logistics, trade, retail, and green/sustainable applications, as well as in other sectors.

Since the early instantiations and implementations of both technologies, it has become apparent that
their convergence could lead to a range of multiplicative benefits. Most IoT applications entail a large
number of heterogeneous geographically distributed sensors. As a result, they need to handle numerous
sensor streams, and could therefore directly benefit from the immense distributed storage capacities
of cloud computing infrastructures. Furthermore, cloud infrastructures could boost the computational
capacities of IoT applications, given that several multisensor applications need to perform complex
processing that is subject to timing and other QoS constraints. Also, a great deal of IoT services (eg,
large-scale sensing experiments and smart-city applications) could benefit from a utility-based deliv-
ery paradigm, which emphasizes the on-demand establishment and delivery of IoT applications over a
cloud-based infrastructure.

2

30 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

2.2 BACKGROUND/RELATED WORK
The proclaimed benefits of the IoT/cloud convergence have (early on) given rise to research ef-
forts that attempted to integrate multisensory services into cloud computing infrastructures. Early
efforts have focused on the development of pervasive (sensor-based) grid-computing infrastruc-
tures [3,4], which emphasized modeling sensors and their data as a resource, and, accordingly,
enabling real-time access, sharing, and storage of sensor data [5]. Sensor Grids have been used for
a number of pervasive computing applications, notably community-sensing applications such as
meteorology [6]. With the advent of cloud computing, the convergence of the cloud computing with
WSN infrastructures has been attempted, as an extension of the sensor grid concept in the scope
of on-demand elastic cloud-based environments. The convergence of cloud computing with WSN
aimed at compromising the radically different and conflicting properties of the two (ie, IoT and
cloud) technologies [7]. In particular, sensor networks are location-specific, resource constrained,
expensive (in terms of development/deployment cost), and generally inflexible in terms of resource
access and availability. On the contrary, cloud-based infrastructures are location-independent and
provide a wealth of inexpensive resources, as well as rapid elasticity [7]. Sensor clouds come to
bridge these differences and endow WSN with some cloud properties. Other issues are associated
with the energy efficiency and the proper handling of service-level agreements [8]. Most recent re-
search initiatives are focusing on real-life implementation of sensor clouds, including open source
implementations [9,10].

In addition to research efforts toward sensor-clouds, there are also a large number of commercial
online cloud-like infrastructures, which enable end users to attach their devices on the cloud, while
also enabling the development of applications that use those devices and the relevant sensor streams.
Characteristic examples of such commercial systems include Xively (www.xively.com), ThingsSpeak
(www.thingspeak.com), and Sensor-Cloud (www.sensor-cloud.com). These systems provide tools for
application development, but offer very poor semantics and no readily available capabilities for utility-
based delivery. There are also a number of other projects which have been using cloud infrastructures
as a medium for machine-to-machine (M2M) interactions [11], however, without adapting the cloud
infrastructure to the needs of the IoT delivery.

Although the previously mentioned projects explore the IoT/cloud integration, they address only
a limited number of the issues that surround the IoT/cloud convergence. Specifically, their ap-
proach is mostly oriented toward interconnecting sensor streams and IoT services with existing
cloud middleware, rather than building a converged cloud/IoT middleware infrastructure that could
allow IoT services to fully leverage the capabilities of the cloud. Indeed, by streaming sensor data
into the cloud, state-of-the-art projects take advantage of the elasticity and the storage capacity of
the cloud in the scope of IoT applications. However, this streaming is not complemented by ap-
propriate resource management mechanisms, which could optimize the usage of cloud resources by
IoT applications. Note that efficient resource management is extremely important, given the vast
amount of data that could be generated by IoT applications, which could result in high costs for
cloud storage. Furthermore, the previously listed IoT cloud platforms feature very poor semantics
in terms of the sensor/data streams that they manage, since they only manage minimal metadata that
refer to the data streams. This lack of semantics is a serious setback for implementing effective re-
source management mechanisms, by identifying which sensors and/or data are required in the scope
of specific IoT applications. At the same time, the lack of metadata prevents the dynamic selection

http://www.xively.com
http://www.thingspeak.com
http://www.sensor-cloud.com/

312.2 BACKGROUND/RELATED WORK

of data streams and their data in the scope of IoT applications, thereby limiting the flexibility as-
sociated with the rapid reuse and repurposing of sensor/data streams across multiple applications.
This rapid reuse and repurposing of data streams within the cloud could provide a sound basis for
the cost-effective development and delivery of multiple IoT applications/services over the cloud
infrastructure. Therefore, the ability to flexibly reuse and repurpose data streams stemming from the
same sensors across multiple applications holds the promise to significantly reduce the Total Cost
of Ownership (TCO) of the IoT services.

In order to alleviate the resource management issues, the cloud infrastructure needs to keep
track of the resources that are consumed/used by the various IoT services. The tracking of these
resources is a prerequisite for implementing resource optimization techniques at both the cloud
(eg, caching mechanisms) and the sensors/IoT (eg, data streaming according to application needs)
levels. This is because the various optimization strategies need to access information about the
metadata of the sensors and their data (eg, location, orientation, timestamps, measurement units,
reliability, accuracy, cost, data frequency). Furthermore, the richness of the metadata is a fac-
tor that could drive the sophistication and efficiency of the resource management schemes. A
prominent way of keeping track of the IoT resources in the cloud is the scheduling of IoT services.
Scheduling refers to the process of regulating how IoT services access the different resources of
the IoT/cloud environment. It implies knowledge about how the various IoT services use the vari-
ous cloud and sensor resources. The distinction between sensor and cloud resources is required,
given that the various sensors are typically owned/managed by different administrative entities
from the cloud provider. Although the scheduling concept is straightforward, its implementa-
tion is challenging, (mainly) given the volatility of the IoT environments, where sensors join and
leave dynamically, at the same time as IoT services are being created and/or destroyed at fine
time-scales.

In this chapter we introduce a novel architecture for IoT/cloud convergence, which alleviates
several of the limitations of state-of-the-art infrastructures, notably the limitations that are associ-
ated with their poor semantics and their inability to support sophisticated resource management
mechanisms. The novel characteristics of the introduced architecture are the integration of rich
metadata (semantics) concerning the sensors and the data streams, as well as the provision of sup-
port for scheduling IoT services in the cloud. In terms of metadata integration, the architecture
supports semantic web technologies and standards, including standardized ontologies for describ-
ing internet-connected objects and their data streams. In terms of scheduling mechanisms, the
architecture provides the means for dynamically establishing IoT services in a way that reserves
and keeps track of the resources that they require. Resource reservations are supported at both the
(global) level of the cloud infrastructure and at the (local) level of individual sensor deployments.
The introduced architecture aims at serving as a blueprint, for rapidly implementing and integrat-
ing IoT/cloud solutions. To this end, an open source implementation of its main components/
modules is provided as part of the FP7 OpenIoT Project (www.openiot.eu), which is cofunded by
the European Commission. In this blueprint direction we also present its use for instantiating and
deploying sample IoT solutions. Furthermore, we illustrate how the scheduling process and the
semantically rich metadata of the sensors can be used, in order to implement nontrivial resource
management mechanisms. Note that the architecture and the modules that are presented in this
chapter have been implemented as part of the OpenIoT Open Source Project (https://github.com/
OpenIotOrg/openiot).

https://www.openiot.eu
https://github.com/OpenIotOrg/openiot
https://github.com/OpenIotOrg/openiot

32 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

2.3 OPENIoT ARCHITECTURE FOR IoT/CLOUD CONVERGENCE
Our approach for converging IoT and cloud computing is reflected in the OpenIoT architecture, which
is depicted in Fig. 2.1. The figure illustrates the main elements of the OpenIoT software architecture
along with their interactions and functionalities, in particular:

• The Sensor Middleware, which collects, filters, and combines data streams stemming from virtual
sensors (eg, signal-processing algorithms, information- fusion algorithms, and social-media data
streams) or physical-sensing devices (such as temperature sensors, humidity sensors, and weather
stations). This middleware acts as a hub between the OpenIoT platform and the physical world,

FIGURE 2.1 OpenIoT Architecture for IoT/Cloud Convergence

332.3 OPENIoT ARCHITECTURE FOR IoT/CLOUD CONVERGENCE

as it enables the access to information stemming from the real world. Furthermore, it facilitates
the interface to a variety of physical and virtual sensors, such as IETF-COAP-compliant sensors
(ie, sensors providing RESTful interfaces), data streams from other IoT platforms (such as https://
xively.com), and social networks (such as Twitter). Among the main characteristics of the sensor
middleware is its ability to stream sensor data in the cloud, according to semantic format (ie,
ontology). The Sensor Middleware is deployed on the basis of one or more distributed instances
(nodes), which may belong to different administrative entities. The prototype implementation
of the OpenIoT platform uses the GSN middleware [12]. However, other sensor middleware
platforms (such as those reviewed in Ref. [13]) could also be used in alternative implementations
and deployments of the introduced architecture.

• The Cloud Computing Infrastructure, which enables the storage of data streams stemming from
the sensor middleware, thereby acting as a cloud database. The cloud infrastructure also stores
metadata for the various services, as part of the scheduling process, which is outlined in the next
section. In addition to data streams and metadata, computational (software) components of the
platform could also be deployed in the cloud in order to benefit from its elasticity, scalability,
and performance characteristics. Note that the cloud infrastructure could be either a public
infrastructure [such as the Amazon Elastic Compute Cloud (EC2)] or a private infrastructure
(such as a private cloud deployed, based on Open Stack). The cloud infrastructure can be
characterized as a sensor cloud, given that it primarily supports storage and management of sensor
data-streams (and of their metadata).

• The Directory Service, which stores information about all the sensors that are available in the
OpenIoT platform. It also provides the means (ie, services) for registering sensors with the
directory, as well as for the look-up (ie, discovery) of sensors. The IoT/cloud architecture specifies
the use of semantically annotated descriptions of sensors as part of its directory service. The
OpenIoT open source implementation is based on an enhanced version of the W3C SSN ontology
[14]. As a result of this implementation technology, semantic Web techniques (eg, SPARQL
and RDF) and ontology management systems (eg, Virtuoso) are used for querying the directory
service. Furthermore, the exploitation of semantically annotated sensors enables the integration
of data streams within the Linked Data Cloud, thereby empowering Linked Sensor Data. Note
that other alternative implementations of the directory services (eg, based on publish/subscribe
techniques) are also possible. The Directory Service is deployed within the cloud infrastructure,
thereby providing the means for accessing sensor data and metadata residing in the cloud.

• The Global Scheduler, which processes all the requests for on-demand deployment of services,
and ensures their proper access to the resources (eg, data streams) that they require. This
component undertakes the task of parsing the service request, and, accordingly, discovering the
sensors that can contribute to its fulfillment. It also selects the resources, that is, sensors that will
support the service deployment, while also performing the relevant reservations of resources. This
component enables the scheduling of all IoT services, as outlined in the following section.

• The Local Scheduler component, which is executed at the level of the Sensor Middleware, and
ensures the optimized access to the resources managed by sensor middleware instances (ie, GSN
nodes in the case of the OpenIoT implementation). Whereas the Global Scheduler regulates the
access to the resources of the OpenIoT platform (notably the data streams residing in the cloud),
its local counterpart regulates the access and use of the data streams at the lower level of the
Sensor Middleware.

https://xively.com/
https://xively.com/

34 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

• The Service Delivery and Utility Manager, which performs a dual role. On the one hand, it
combines the data streams as indicated by service workflows within the OpenIoT system, in order
to deliver the requested service. To this end, this component makes use of the service description
and the resources identified and reserved by the (Global) Scheduler component. On the other
hand, this component acts as a service-metering facility, which keeps track of utility metrics for
each individual service. This metering functionality is accordingly used to drive functionalities
such as accounting, billing, and utility-driven resource optimization. Such functionalities are
essential in the scope of a utility (pay-as-you-go) computing paradigm.

• The Request Definition tool, which enables the specification of service requests to the
OpenIoT platform. It comprises a set of services for specifying and formulating such requests,
while also submitting them to the Global Scheduler. This tool features a Graphical User
Interface (GUI).

• The Request Presentation component, which is in charge of the visualization of the outputs of
an IoT service. This component selects mashups from an appropriate library in order to facilitate
service presentation. Service integrators and solution providers have the option to enhance or
override the functionality of this component toward providing a presentation layer pertaining to
their solution.

• The Configuration and Monitoring component, which enables management and configuration
functionalities over the sensors, and the IoT services that are deployed within the platform. This
component is also supported by a GUI.

Fig. 2.1 does not specify implementation technologies associated with the various components,
thus providing an abstract presentation of the functional elements of the architecture. OpenIoT
is, however, implemented on the basis of specific implementation technologies [such as GSN for
the sensor middleware, W3C SSN for the directory service, and JSF (Java Server Faces) libraries
(such as Primefaces)]. Alternative implementations based on alternate technologies are however
possible. IoT solution providers and/or service integrators could adopt this architecture as a base-
line for providing their own implementation, which may use only part of the open source compo-
nents and technologies of the OpenIoT platform implementation, which is currently available at:
https://github.com/OpenIotOrg/openiot.

The delivery of IoT services through the platform relies on data collected and streamed into the
cloud through the (GSN) sensor middleware. Given the existence of multiple data streams within the
cloud, a typical workflow associated with the use of the OpenIoT platform involves:

• The formulation of a request for an IoT service using the Request Definition tool, and its
submission to the (Global) Scheduler component. The request specifies the needed sensors and the
type of processing to be applied over the data, as well as the preferred visualization of the results.

• The parsing of the IoT service request by the scheduler, and the subsequent discovery of the
sensors/ICOs to be used in order to deliver the IoT service. Toward discovering the required
sensors, the Directory Service is queried and accessed.

• The formulation of the service (eg, in the form of a SPARQL query) and its persistence in the
cloud, along with other metadata about the service. The metadata include a handle/identifier to the
created IoT service.

• The execution of the service by end users (based on the handle of the target service) and the
visualization of the results.

https://github.com/OpenIotOrg/openiot

352.4 SCHEDULING PROCESS AND IoT SERVICES LIFECYCLE

The platform caters to the optimization of the resources entailed in the delivery of IoT services.
These optimizations leverage data formulated during the scheduling process, which is described in the
following section, along with the functionalities of the Global Scheduler component.

2.4 SCHEDULING PROCESS AND IoT SERVICES LIFECYCLE
The Global Scheduler component is the main and first entry point for service requests submitted to the
cloud platform. It parses each service request and accordingly performs two main functions toward
the delivery of the service, namely the selection of the sensors/ICOs involved in the service, but also
the reservation of the needed resources. The scheduler manages all the metadata of the IoT services,
including: (1) The signature of the service (ie, its input and output parameters), (2) the sensors/ICOs
used to deliver the service, and (3) execution parameters associated with the services, such as the inter-
vals in which the service shall be repeated, the types of visualization (in the request presentation), and
other resources used by the service. In principle, the Global Scheduler component keeps track of and
controls the lifecycle of IoT services, which is depicted in Fig. 2.2. In particular, the following lifecycle
management services are supported by the scheduler:

FIGURE 2.2 State Diagram of the OpenIoT Services Lifecycle Within the Scheduler Module

36 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

• Resource Discovery: This service discovers a virtual sensor’s availability. It therefore provides the
resources that match the requirements of a given request for an IoT service.

• Register: This service is responsible for establishing the requested service within the cloud
database. To this end, it initially identifies and logs (within the cloud) all the sensors/ICOs, which
are pertinent and/or needed for delivering the requested IoT service. The metadata of the IoT
service (ie, signature, sensors/ICOs, and execution parameters) are persisted to the cloud, based
on appropriate data structures. As part of the registration process, a unique identifier (ServiceID)
is assigned to the requested IoT service. The current implementation of the “Register” service,
as part of the OpenIoT Open Source Project, persists the service description as a SPARQL query
(which covers a wide range of sensor queries/services against the W3C SSN directory service).
Furthermore, the open source implementation maintains an appropriate set of data structures
(within the cloud), which holds other metadata for each registered IoT service.

• Unregister: In the scope of the unregister functionality for given IoT service (identified through its
ServiceID), the resources allocated for the service (eg, sensors used) are released (ie, disassociated
from the service). In the case of an active service, a deactivation process is initially applied. The status
of the service is appropriately updated in the data structures holding the metadata about the service.

• Suspend: As part of suspend functionality, the service is deactivated and therefore its operation
is ceased. Note however, as part of the suspension the platform does not release the resources
associated with the service.

• Enable from Suspension: This functionality enables a previously suspended service. The data
structures holding the service’s metadata in the cloud are appropriately updated.

• Enable: This service allows the enablement of an unregistered service. In practice, this
functionality registers the service once again in the platform, through identifying and storing the
required sensors/ICOs.

• Update: This service permits changes to the IoT service. In particular, it allows for the updating
of the service’s lifecycle metadata (ie, signature, sensors/ICOs, execution parameters) according
to the requested changes. In the scope of the OpenIoT open source implementation, the scheduler
formulates an updated service description (as SPARQL script), based on the updated user request.
It also updates the data structures comprising the metadata of the service based on the updated
information.

• Registered Service Status: This service provides the lifecycle status of a given IoT service (which
is identified by its ServiceID). Detailed information (ie, all the metadata) about the IoT service is
provided.

• Service Update Resources: This service checks periodically (at a configurable specified time-
interval) all the enabled services, and identifies those using mobile sensors [eg, smartphones,
UAVs (Unmanned Aerial Vehicles)]. Accordingly, it updates (if needed) the IoT service metadata
on the basis of the newly defined sensors that support the IoT service. Such an update is needed
in cases where a mobile sensor no longer fulfills the location-based criteria set by the service, or
even in cases where additional (new) sensors fulfill these criteria.

• Get Service: This service retrieves the description of a registered service, that is, the SPARQL
description in the case of the OpenIoT open source implementation.

• Get Available Services: This service returns a list of registered services that are associated with
a particular user. Note that the various IoT services are registered and established by users of
the platform.

372.4 SCHEDULING PROCESS AND IoT SERVICES LIFECYCLE

In order to support the lifecycle services outlined previously, the scheduler provides an appropriate
API, which also enables the services’ transition between the various lifecycle states. The platform also
supports baseline authentication and access-control mechanisms, which allows specific users to access
resources and services available within the platform. Note that only registered users are able to leverage
these aforementioned lifecycle management functionalities.

The following figures illustrate the details of some lifecycle-management use cases within the
Scheduler component. In particular, Fig. 2.3 illustrates the main workflow associated with the service
registration process. In the scope of this process, the Scheduler attempts to discover the resources (sen-
sors, ICO) that will be used for the service delivery. In case there are no sensors/ICOs that can fulfill
the request, the service is suspended. In case a set of proper sensors/IOCs is defined, the relevant data
entities are updated (eg, relationship of sensors to services) and a SPARQL script associated with the

FIGURE 2.3 “Register Service” Process Flowchart

38 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

service is formulated and stored for later use. Following the successful conclusion of this process, the
servicer enters the “Registered” state and is available for invocation.

Likewise, Fig. 2.4 illustrates the process of updating the resources associated with a given service.
As already outlined, such an update process is particularly important when it comes to dealing with IoT
services that entail mobile sensors and ICOs, that is, sensors and ICOs whose location is likely to change
within very short timescales (such as mobile phones and UAVs). In such cases, the Update Resources
process could regularly check the availability of mobile sensors and their suitability for the registered
service whose resources are updated. The workflow in Fig. 2.4 assumes that the list of mobile sensors is
known to the service (ie, the sensors’ semantic annotations indicate whether a sensor is mobile or not).

Even though the process/functionality of updating resources is associated with the need to identify the
availability and suitability of mobile sensors, in principle the Update process can be used to update the
whole list of resources that contribute to the given service. Such functionality helps the OpenIoT platform
in dealing with the volatility of IoT environments, where sensors and ICOs may dynamically join or leave.

Finally, Fig. 2.5 illustrates the process of unregistering a service, in which case the resource as-
sociated with the service is released. The data structures of the OpenIoT service infrastructure are
also modified to reflect the fact that the specified service is no longer using its resources. As already
explained, this update is important for the later implementation of the resource management and opti-
mization functionalities.

The previously outlined scheduling functionalities enable the delivery of the service through the
Service Delivery and Utility Manager component of the OpenIoT architecture. The latter component
has a dual functionality: On the one hand (as a service manager) it is the module enabling data retrieval
from the selected sensors comprising the IoT service. On the other hand, the utility manager maintains
and retrieves information structures regarding service usage, and supports metering, charging, and
resource management processes.

The Service Delivery and Utility Manager (SD&UM) provides an appropriate API, enabling the
platform to provide the outcome of a given service. In particular, the module supports:

• Subscription for a report: This service enables invocation of already defined IoT services
(identified based on their ServiceID). In particular, it supports the collection of results from
a given IoT service (eg, a SPARQL service) and their dispatching toward an application’s
destination address (URI).

• Callback service: This service is instantiated in order to deliver a report to all subscribers to a
given IoT service (identified based on its ServiceID). The report is delivered according to the
schedule defined by the user at the service registration time.

• Unsubscribe for a report: This service is invoked by the user in order to cease its subscription to a
given report.

• Poll for a report: This service enables the user to periodically invoke an already defined IoT
service within specified time intervals.

• Get the utility usage of a user: This service enables the user to retrieve utility information associated
with a specific user. It takes into account all the IoT services that have been used by the specific user.

• Get the utility usage of a registered service: This service enables the user to retrieve the utility
information associated with a specific IoT service (identified based on its ServiceID). Note that
this functionality enables the application of utility functions over utility metrics, in order to
calculate prices/costs in accordance to the accounting policies of the IoT/cloud service provider.

392.4 SCHEDULING PROCESS AND IoT SERVICES LIFECYCLE

FIGURE 2.4 “Update Resources” Service Flowchart

40 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

• Record utility usage: This functionality enables the recording/logging of usage information,
associated with an IoT service, in terms of volume of requested data and the types of sensors/
resources used. Utility recording can be activated as a result of a polling request, as well as in the
scope of a callback service.

• Get service status: This functionality provides access to the status of a specific IoT service by
providing the ServiceID.

• Get service description: This functionality provides access to the description of the service.
• Get available services: This service functionality allows the user to access the list of IoT services,

which are associated with a specific user.

As already outlined, the service delivery and utility management functionalities are based on the
earlier scheduling of the requests for IoT services. In particular, the scheduling of requests ensures the

FIGURE 2.5 “Unregister Service” Service Flowchart

412.5 SCHEDULING AND RESOURCE MANAGEMENT

logging of the appropriate information for managing service delivery to the various users, based on
both push and pull functionalities (ie, supported by the “subscription” and “polling” models outlined
previously). Furthermore, the management of scheduling information provides a basis for calculating
utility metrics for metering, accounting, and billing purposes. With all of this information at hand, the
introduced, converged IoT/cloud infrastructure provides the means for implementing resource manage-
ment and optimization algorithms, which are outlined in the following section.

2.5 SCHEDULING AND RESOURCE MANAGEMENT
The OpenIoT scheduler enables the availability and provision of accurate information about the data
requested by each service, as well as about the sensors and ICOs that will be used in order to deliver
these data. Hence, a wide range of different resource management and optimization algorithms can
be implemented at the scheduler component of the OpenIoT architecture. Furthermore, the envisaged
scheduling at the local (ie, sensor middleware) level enables resource optimization at the sensor data-
acquisition level (ie, at the edges of the OpenIoT infrastructure).

In terms of specific optimizations that can be implemented over the introduced IoT/cloud infra-
structure are optimization techniques that have their roots in the WSN literature, where data man-
agement is commonly applied as a means to optimize the energy efficiency of the network [15]. In
particular, the scheduler components (at both the global and the local levels) maintain information
that could optimize the use of the network on the basis of aggregate operations [16], such as the ag-
gregation of queries to the sensor cloud [17]. Furthermore, a variety of in-network processing and
data management techniques can be implemented in order to optimize processing times and/or re-
duce the required access to the sensor network [18,19]. The criteria for aggregating queries and their
results could be based on common spatial regions (ie, data aggregation based on sensors residing in
geographical regions of high interest). In general, the in-network processing approaches previously
outlined can be classified into three broad categories, namely push [20], pull [16,19], and hybrid
approaches [18,21].

Another class of optimizations that are empowered by the introduced scheduling approach are
caching techniques [22,23], which typically reduce network traffic, enhance the availability of data to
the users (sink), and reduce the cost of expensive cloud-access operations (eg, I/O operations to public
clouds). The caching concept involves maintaining sensor (data streams) data to a cache memory in
order to facilitate fast and easy access to them. In the case of OpenIoT, caching techniques could obvi-
ate the need to execute the results of previously executed SPARQL queries.

As a proof-of-concept implementation, we have implemented two resource optimization schemes
over the open source OpenIoT cloud platform. The first scheme concerns bandwidth and storage
optimization through indirect control over the sensor, and falls in the broader class of in-network
process approaches discussed previously. As part of this scheme, a pull approach is adopted in
terms of accessing the sensor networks of the various nodes. In particular, a periodic timed (ie,
polling) task is running on the X-GSN module, which is responsible for direct sensor management.
This task queries the LSM/W3C SSN repository, in order to determine which sensors are needed
and used by IoT services. The task compares the query results to the LSM (triplets), with the list of
sensors that are currently active on the X-GSN sensor middleware module. Accordingly, X-GSN:
(1) activates sensors that have needed/used an IoT service, which are not active on the module; and

42 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

(2) deactivates the sensors that are active on the module, but have not been used by any IoT service.
This process is illustrated on the sequence diagram in Fig. 2.6. The implementation of this scheme
ensures that no unnecessary data will be streamed from the sensors (and the X-GSN node that they
are attached to) to the cloud, thereby saving in terms of bandwidth and costs associated with cloud
access. Hence, the implemented pull approach can serve as a basis for optimizing both latency and
monetary costs.

The resource optimization scheme was implemented on the basis of the caching of SPARQL
queries/requests. Caching can alleviate one of the most significant drawbacks of the use of triple stores
for the deployment of semantic technologies, which is their low performance compared to conventional
relational databases. Besides the issue of performance, caching can also have monetary benefits, given
that accessing remote data-stores like Amazon S3 or Google Cloud Data-Store incurs pay-as-you-go
costs, depending on the provider’s pricing scheme.

The caching solution that was implemented over the OpenIoT infrastructure is based on [24]. In
particular, a small proxy layer is implemented and used to route all SPARQL queries. Whenever a
query is entered into the system, the proxy layer checks whether the result has already been cached.
In such a case, the result is returned to the client directly through the cache without accessing the
SPARQL data store. In any other case the query is redirected to the SPARQL data store and the result
is stored in the local cache before it is returned to the user (client).

As a validating example of the proxy layer implementation over the OpenIoT sensor cloud, we have
a assumed a Pareto distribution for the probability density of the various SPARQL queries, as in [24],
which is more practical compared to the assumption that all queries arrive with the same probability

(as in the [25] benchmark). Note that the “a” parameter of the Pareto distribution = =p x
ab

x
()

a

a 1 allows

the simulation of either a wider or narrower spectrum of repeated queries. As expected, the wider the
variety of SPARQL queries (representing IoT services), the fewer unique queries that are serviced di-
rectly from the LSM implementation in the cloud, resulting ultimately in the majority of queries being
serviced from the cache proxy. In order to simulate a practical scenario, we assume that the Amazon
S3 public cloud data-store [which features a linear pricing-scheme (eg, $0.005/1000 requests)] is used
in conjunction with the OpenIoT infrastructure. We also assume that the cache miss-rates are those
depicted in [24] for a benchmark based on 10 million triples and 12,500 queries. Furthermore, yearly
server operational costs that support a 20TB cache have been taken into account (Table 2.1). This cache
capacity is considered sufficient to store all the query results obtained from the cloud data-store for this
particular scenario.

Under these specific circumstances, Fig. 2.7 illustrates the total costs incurred for seven different
scenarios of the SPARQL queries distribution that correspond to different varieties of queries. The
different varieties correspond to different parameters of the Pareto distribution in [24], which result in
different miss-rates [25].

As expected, for a low number of requests per hour, there is no benefit for using cache. At a
medium-high number of hourly requests, such as the second category at 1450 Krph, the threshold
where it becomes more efficient to use a caching solution is just hit. It is finally evident, in the last
category at 2000 Krph, that at a high number of requests it is far more efficient to use cache. In order
to achieve an efficient caching solution there must be a clear estimate, first of all, of the average re-
quests per hour on the cloud data-store, as well as to what extent the cache storage capacity is suffi-
cient. Finally, it is also evident by this simulation that the determining factor for cache performance

p(x)=abaxa=1

4
3

2
.5

 SC
H

ED
U

LIN
G

 A
N

D
 R

ESO
U

R
C

E M
A

N
A

G
EM

EN
T

FIGURE 2.6 “Service Creation” Service Flowchart

44 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

is not the absolute number of queries. Rather, it is the variety of different queries that are performed
on the cloud data-store in order to quickly build up the cache. Hence, efficient implementations of
the caching schemes could consider caching criteria that could minimize the spectrum of queries
variance, thereby maximizing the hit ratios [eg, criteria based on temporal parameters (such as the
time that the queries are asked) or spatial parameters (such as the location of the sensors entailed in
the queries)].

Table 2.1 Total Cost of Ownership for a 20TB Cache Server

Caching Server Cost/Unit

Server Disk Capacity (TB) 5

Unit Cost (€) 3,500

Lifespan (years) 3

PV Discount Rate (%) 5

Server Maintenance/Year (€) 1,500

Energy cost/year (€) 1,000

Server Cost/Year (Present Value)

Cache Size Required (TB) 20

Servers Required 4

Cost/Year (PV) 22,635.00 €

FIGURE 2.7 Comparison of Costs Associated With the Use of Cache Server to the Cost of the Use of a Public
Cloud Data-Store

452.6 VALIDATING APPLICATIONS AND USE CASES

2.6 VALIDATING APPLICATIONS AND USE CASES
The overall scheduling infrastructure has also been validated through the development of proof-of-
concept IoT applications, which comprise multiple IoT services that have been integrated based on the
OpenIoT infrastructure. One of the proof-of-concept applications falls in the wider realm of smart-city
applications, aimed at providing a set of smart services within a student campus in Karlsruhe, Germany.
In particular, this smart-campus application creates a semantic storage with an ontology-based descrip-
tion of real-world objects, which are identified by different labeling methods (QR-Codes, RFID-Tags).
The objects are associated to their semantic description by unified resource identifiers and stored to
the semantic storage. The semantic information about real-world objects is retrieved and updated via
semantic queries (SPARQL), which are invoked through mobile devices. The information about the
real-world objects (eg, rooms, books) is then displayed by dedicated views, and within existing views
of standard smartphone applications, like a map application.

The second use-case concerns the implementation of IoT services for manufacturing, and, more
specifically, for the printing and packing industry, with emphasis on the production of boxes. The
IoT services support key production processes in this industry, such as printing on paper sheets and
die-cutting (for perforation of the sheets), as well as gluing and folding the pieces of a box. A variety
of sensors are employed to facilitate production-line automation and quality-control checks, includ-
ing laser sensors, high-speed 1D/2D barcode verification cameras, weight sensors, contrast and color
sensors (for marking code identification), as well as ultrasonic sensors (for measuring heights and
material-reel diameters). In this environment, the OpenIoT infrastructure is used to enable the dynamic
on-demand formulation, calculation, and visualization of KPIs (Key Performance Indicators) about the
manufacturing processes. Interesting KPIs include, for example: (1) in the area of materials consump-
tion, the rate of consumption and how much scrap is produced; (2) in the area of machine performance,
how fast each machine is working, what is the rate of product/shipping container production, and the
overall efficiency of the machines; (3) in the area of labor activity and performance, how much time
is spent setting up/repairing the machine; and (4) in the area of machine operation, an interesting KPI
relates to tracking the time that machines spend in their various modes (ie, setup/repair/idle/operation).
To this end, high-level events captured, based on the processing of the aforementioned sensors, are
announced as virtual sensors to the W3C SSN directory through the X-GSN middleware. In particular,
KPI calculations are implemented as a set of X-GSN virtual sensors, and, accordingly, are published to
the sensor cloud and made available for semantic querying. Requests to the OpenIoT system (via the
scheduler) are able to define, select, filter, and visualize KPIs on the basis of various selection criteria,
including location (plant, floor, type). At the same time, several other requests will be able to compose
(eg, aggregate) KPIs on the basis of other, more elementary, KPIs. Note that composite KPIs could
dynamically combine information from multiple machines and plants, as soon as these are published
to the sensor cloud. Some examples of composite KPIs formulated and measured include: (1) find the
rates of all machines in a company’s factories (within location L1, L2, L3) and plot them together; (2)
find the operation status of all machines of type X in a company’s factories (within locations L1, L2,
L3) and overlay them; and (3) find the rates of all machines in my factories (within locations L1, L2,
L3) and the local temperatures at locations (L1, L2, L3), and plot them (eg, in order to understand how
local temperature variations affect machine operation).

The third use-case (part of the “Phenonet” project) uses state-of-the-art sensor network technology,
in order to gather environmental data for crop-variety trials, at a far higher resolution than conventional

46 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

methods, and provides a high-performance real-time online data-analysis platform that allows sci-
entists and farmers to visualize, process, and extract both real-time and long-term crop performance
information. Phenonet uses a WSN in a wheat-variety trial at the Yanco Managed Environment Facility
in New South Wales (NSW). This was a key part of an experiment to test the feasibility of using remote
monitoring of crop performance in trials across Australia. The WSN consists of sensors measuring (1)
local environmental data, including: solar radiation, air temperature, relative humidity, rainfall, and
wind speed; and (2) crop performance data, including: soil moisture, soil temperature, and an infrared
sensor that measures leaf (crop canopy) temperature. The sensors are linked by short-range digital
radio to a base station that can return the results in real time to a server in Canberra via 3G wireless
networking. The raw data are disseminated to the sensor cloud, and are made available for normaliza-
tion, integration correlation, and real-time visualization.

2.7 FUTURE RESEARCH DIRECTIONS
An open source implementation of the introduced scheduling concepts is available as part of the Ope-
nIoT Open Source Project. We expect this chapter to motivate the open-source community toward
providing other implementations of scheduling concepts for IoT services, including their integration
with cloud computing infrastructures. Such concepts could deal with caching of IoT service requests
and response data, taking into account the spatiotemporal characteristics of the respective IoT queries.
In terms of the OpenIoT middleware infrastructure, future research work includes the development of
tools for visualizing IoT resources, as part of the Integrated Development Environment (IDE) of the
OpenIoT project.

2.8 CONCLUSIONS
In this chapter we have introduced the OpenIoT architecture as a practical approach to the integration
and convergence of IoT with cloud computing. As part of this architecture we have also illustrated the
benefits of a scheduling approach for IoT services. Scheduling is one of the key merits and distinguish-
ing characteristics of OpenIoT, when compared to state-of-the-art approaches for IoT/cloud integra-
tion. Indeed, the presented approach allows for the logging of a wide range of information associated
with IoT services, which can enable the implementation of utility-based functionalities, as well as a
wide range of resource optimizations, both of which are essential to both end-users and cloud-service
providers. In most cases these optimizations are also very important in order to fully leverage the ben-
efits of a cloud computing model for IoT services, such as cost efficiency and the adoption of utility-
driven pay-as-you-go operational models.

The merits of the introduced scheduling architecture have been validated based on practical imple-
mentations of use cases, as well as of resource-optimization mechanisms. In terms of use cases, three
distinct IoT applications have been developed, which utilize a variety of sensors and IoT services
across three different application domains (smart cities, manufacturing, crop management). At the
same time, the resource optimization capabilities have been validated on the basis of the implementa-
tion of two different schemes, one relating to in-network optimization of sensor information dissemina-
tion and another to caching of semantic-based requests (ie, queries) for IoT services.

47REFERENCES

ACKNOWLEDGMENTS
Part of this work has been carried out in the scope of the OpenIoT project (FP7-287305) (http://openiot.eu). The
authors acknowledge help and contributions from all partners of the project. The smart campus, manufacturing,
and crop-management use cases that have been briefly presented in Section 2.5 have been implemented by the
OpenIoT consortium partners Fraunhofer-IOSB (http://www.iosb.fraunhofer.de/), SENSAP S.A (www.sensap.
eu), and CSIRO (csiro.au), respectively.

REFERENCES
 [1] McFedries P. The cloud is the computer. IEEE Spectr 2008;45(8):p. 20.
 [2] Vermesan O, Friess P. Internet of Things—global, technological, and societal trends. River Pub Ser Commun 2011.
 [3] Tham CK, Buyya R. SensorGrid: integrating sensor networks and grid computing. CSI Commun 2005;29:24–9.
 [4] Gaynor M, Moulton SL, Welsh M, LaCombe E, Rowan A, Wynne J. Integrating wireless sensor networks

with the grid. IEEE Internet Comput 2004;8:32–9.
 [5] Lim HB, et al. Sensor grid, integration of wireless sensor networks and the grid. In: IEEE conference on local

computer networks, 30th anniversary (LCN’05); 2005.
 [6] Lim HB, Ling KV, Wang W, Yao Y, Iqbal M, Li B, et al. The national weather sensor grid. In: Proceedings of

the fifth ACM conference on embedded networked sensor systems (SenSys 2007); 2007.
 [7] Lee K. Extending sensor networks into the cloud using Amazon web services. In: IEEE 2010 international

conference on networked embedded systems for enterprise applications; 2010.
 [8] Mehedi Hassan M, Song B, Huh E-n. A framework of sensor-cloud integration opportunities and challenges.

ICUIMC 2009;618–626.
 [9] Fox GC, Kamburugamuve S, Hartman R. Architecture and measured characteristics of a cloud based Internet of

Things, API workshop 13-IoT Internet of Things, machine to machine and smart services applications (IoT 2012).
In: The 2012 international conference on collaboration technologies and systems (CTS 2012); 2012. p. 21–25.

 [10] Soldatos J, Serrano M, Hauswirth M. Convergence of utility computing with the Internet of Things. In:
International workshop on extending seamlessly to the Internet of Things (esIoT) 2012 IMIS international
conference. Palermo, Italy, July 4–6, 2012.

[11] Kranz M, Roalter L, Michahelles F. Things that twitter: social networks and the Internet of Things, what can
the Internet of Things do for the citizen (CIoT). In: Proceedings of the workshop at the eighth international
conference on pervasive computing. Helsinki, Finland, 2010.

[12] Aberer K, Hauswirth M, Salehi A. Infrastructure for data processing in large-scale interconnected sensor
networks. MDM 2007;198–205.

[13] Chatzigiannakis I, Mylonas G, Sotiris E. Nikoletseas, 50 ways to build your application: a survey of
middleware and systems for wireless sensor networks. ETFA 2007;466–73.

[14] Taylor K. Semantic sensor networks: the W3C SSN-XG ontology and how to semantically enable real time
sensor feeds. In: Proceedings of the semantic technology conference. San Francisco, CA, USA, June 5–9, 2011.

[15] Abadi DJ, Madden S, Linder W. REED: robust, efficient filtering and event detection in sensor networks. In:
Proceedings of the thirty-first VLDB conference. Trondheim, Norway; 2005. p. 769–780.

[16] Yao Y, Gehrke J. The cougar approach to in-network query processing in sensor networks. SIGMOD Rec
2002;31(3):9–18.

[17] Meng M, Yang J, Xu H, Jeong B-S, Lee Y-K, Lee S. Query aggregation in wireless sensor networks. IJMUE
2008;3(1)19–26.

[18] Lee KCK, Lee WC, Zheng B, Winter J. Processing multiple aggregation queries in geo-sensor networks.
In: Proceedings of the eleventh international conference on database systems for advanced applications
(DASFAA); 2006. p. 20–34.

http://openiot.eu/
http://www.iosb.fraunhofer.de/
http://www.sensap.eu/
http://www.sensap.eu/
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0050

48 CHAPTER 2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE

[19] Madden SR, Franklin MJ, Hellerstein JM, Hong W. Tinydb: an acquisitional query processing system for
sensor networks. ACM Trans Data Base Syst (TODS) 2005;30(1):122–73.

[20] Ye F, Luo H, Cheng J, Lu S, Zhang L. In: A two-tier data dissemination model for large-scale wireless sensor
network. In: MobiCom 2002: Proceedings of the eighth annual international conference on mobile computing
and networking. Atlanta, GA: ACM; 2002. p. 148–159.

[21] Li X, Huang Q, Zhang Y., Combs, needles, haystacks: balancing push and pull for discovery in large-scale
sensor networks, ACM sensys. Baltimore, MD; 2005.

[22] Li S, Zhu LJ. Data caching based queries in multi sink sensor networks. In: IEEE proceedings of the fifth
international conference on mobile ad-hoc and sensor networks; 2009.

[23] Chow CY, Leong HV, Chan ATS. GroCoca: group-based peer-to-peer cooperative caching in mobile
environment. IEEE J Sel Areas Commun 2007;25(1)179–191.

[24] Martin M, Unbehauen J, Auer S. Improving the performance of semantic web applications with SPARQL
query caching. In: Proceedings of the extended semantic web conference (ESWC). Heraklion, Greece:
Springer; 2010. p. 304–318.

[25] Bizer C, Schultz A. The berlin SPARQL benchmark. Int J Sem Web Inf Syst 2009;5(2):1–24.

http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00002-2/ref0065

49

CHAPTER

DEVICE/CLOUD
COLLABORATION
FRAMEWORK FOR
INTELLIGENCE APPLICATIONS

Y. Yoon*, D. Ban**, S. Han**, D. An†, E. Heo**
*Hongik University, Wausan-ro, Mapo-gu, Seoul, South Korea; **Samsung Electronics, South Korea;

†Keimyung University, Dalgubeol-daero, Dalseo-gu, Daegu, South Korea

3.1 INTRODUCTION
Cloud computing is now an established computing paradigm that offers on-demand computing and
storage resources to the users who cannot afford the expenditure on computing equipment and man-
agement workforce. This computing paradigm first led to the notable commercial success of Amazon’s
EC2 [1] and Microsoft’s Azure [2]. These companies have adopted the business model of renting out
their virtualized resources to the public. More recently, Google and Facebook are now utilizing their
data-center-based clouds to internally run machine-learning algorithms based on the large volume of
data collected from their users. Google runs a popular proactive service, Google Now, which gives indi-
vidualized recommendations based on the user’s context inferred from the personal data [3]. Facebook
leverages the user-uploaded images and social-network data to automatically recognize users and the
relationship among them [4,5].

Despite the continuous growth, many organizations have raised the concerns about the cloud com-
puting with respect to performance and privacy. In the following section, we elaborate on those issues.

3.2 BACKGROUND AND RELATED WORK
Public cloud-vendors have attracted institutions who have little incentive to pay the upfront cost of IT
infrastructure, especially when the applications and services they host do not require high compute
and storage capacity. However, once their applications and services become popular, the demand for
higher compute and storage capacity may suddenly soar. This is the point when these institutions may
not feel that public cloud is cost-effective anymore, and consider opting for a different cloud comput-
ing model.

For example, one may adopt a hybrid cloud computing model that utilizes both the public and the
private cloud infrastructure [6]. A typical use case of this model is to do workload bursting, that is,
offloading tasks from the public cloud to the self-managed private cloud for cost savings [7]. Some
institutions may rather resort to embarking on an entirely private cloud infrastructure. For example, in

3

50 CHAPTER 3 INTELLIGENCE APPLICATIONS

2015, Samsung Electronics migrated S Voice, its mobile voice-based personal-assistance service, from
a proprietary public cloud to its home-grown cloud infrastructure. This migration has led to service per-
formance improvement and reduced management cost. However, Samsung’s own cloud infrastructure
is small in scale and serves only a special purpose. Therefore, whether it can scale out to host various
other services is questionable.

Some organizations have considered forming a community that shares cloud infrastructure and
management resources. In this model, the community members can share their cloud resources with
one another. In addition, the shared cloud resources can be offered to nonmembers to drive extra rev-
enue. Recently, companies such as IBM and Samsung have teamed up to push for the community
cloud-computing initiatives [8]. However, there are many hurdles ahead, such as crafting an optimal
policy for sharing compute and management resources among the participants.

Whereas the aforementioned concerns are related to the cost and efficiency issues, many cloud users
have also expressed their fears about the security and privacy breach. For example, a number of private
photos of celebrities were leaked from Apple’s iCloud in 2014 [9]. Since then, Samsung Electronics
has had a hard time mobilizing on-device personal data to the cloud for analytics service because many
device owners strongly demand privacy protection. These concerns hamper the effort of advancing
personalized intelligence services because the collection of private data is critical for the quality of
such services.

In the remainder of this chapter, we present a novel cloud-computing framework that improves
both the scalability and the privacy-protection mechanism. At a high level, this framework leverages
the compute and storage resources on the smart mobile devices. Also, this framework enables security
solutions that protect privacy without degrading the quality of applications. Note that we focus on the
applications that offer personalized intelligence service. Therefore, we demonstrate how the selected
real-world intelligence applications take advantage of the new cloud-computing framework.

3.3 DEVICE/CLOUD COLLABORATION FRAMEWORK
In this section, we present a novel framework that enables collaboration between smart mobile devices
and cloud for a more scalable and secure computing mechanism.

3.3.1 POWERFUL SMART MOBILE DEVICES
In 2014, more than 1 billion smartphones were sold worldwide, and more than 2 billion consumers are
expected to get a smartphone by 2016 [10]. Smartphonesa nowadays have enough computing capacity
to process various computing tasks. However, the device usage can be constrained by limited battery
life and network connectivity. Therefore, we can consider utilizing the highly available cloud resources
in addition to the device.

In Fig. 3.1, we have illustrated a high-level layout of our device/cloud collaboration framework.
In the following section, we will explain how the framework functions to address the aforementioned
concerns on performance and privacy.

aWe will focus on the smartphones as the representative smart mobile devices. In the remainder of this chapter, the term
device will actually refer to smartphones.

513.3 DEVICE/CLOUD COLLABORATION FRAMEWORK

3.3.2 RUNTIME ADAPTATION ENGINE
Given a computation task, our framework first faces a problem of choosing the entity to execute the
task. Suppose we are given a task of processing a query issued over voice, and assume that we have a
lightweight mobile version of a voice-query processing engine that is embedded in a smartphone. This
mobile engine can answer the given query without the cost of transferring the voice data to the cloud
over the network. However, it will consume the limited battery life of the device, and/or the accuracy
of the result may not necessarily be as good as that of the cloud-based query processing engine, which
runs on resources with higher compute capacity. If the lightweight voice-query engine returns a poor
result, then the user may have to issue the query redundantly to the cloud-based query processing en-
gine with the hope of getting a better result. This may hurt the overall quality of experience (QoE). This
calls for a decision mechanism that automatically selects a better agent that can execute a given task.
With the automatic selection process in place, users do not have to worry about going through extra
interaction cycles for determining where to run a job.

Note that the Runtime Adaptation Engine (RAE) sits at the core of our framework, as shown in
Fig. 3.1. The RAE maintains a list of available devices and cloud to utilize Device/Cloud Discovery,
and monitors the state of their available resources. The RAE employs a Logistic Regression [11] algo-
rithm to learn the most cost-effective policy for distributing tasks among devices and cloud, given the
resource state. Here, the definition of the cost function is the weighted sum of the resource state (such
as battery life), network, and CPU usage. The policy obtained by running the Logistic Regression is
enforced by the Device/Cloud Selection module that chooses the most economical compute resources,
based on the expected cost-value for a given task.

The mechanism of the RAE is actually an autonomous agent, which can be deployed on each device
and cloud. RAEs communicate with each other to transparently share the resource state for determin-
ing the ways to distribute a given workload. The cloud-side RAE can also model its own cost function

FIGURE 3.1 High-Level Layout of the Device/Cloud Collaboration Framework

52 CHAPTER 3 INTELLIGENCE APPLICATIONS

as a weighted sum of residual CPU cycles and storage space across the entire infrastructure. If the
residual capacity falls below particular thresholds, the cloud may have to reject the resource-sharing
request coming from the paired devices. This is because running the requested task would be too
costly. Specifically, the cloud-side RAE advises the device-side RAE to either execute the task within
the device or simply wait for the compute resource on the cloud to be freed up. As mentioned earlier,
the RAEs on the devices and the cloud make decisions autonomously, without any supporting broker-
age system in the middle. However, the device-side RAE has the burden of periodically monitoring
the state of the cloud resources. On the other hand, the cloud-side RAE does not have to monitor the
resource state of the millions of paired devices, as the cloud makes a relatively simple decision, that is,
to either reject or accept a task-execution request. By default, our framework does not consider offload-
ing cloud-initiated tasks to the devices. However, later in Section 3.4, we will show a case where the
original cloud-side application components can be customized to run on the mobile devices.

We have focused on the case where the user’s task is distributed between a single device and cloud.
However, a recent study has revealed that more than 60% of the online-service users use at least two
devices daily, and about 25% of the users use three devices [12]. This fact motivates us to consider the
collaboration among devices, as well as through machine to machine (M2M) communication chan-
nels, such as Samsung’s AllShare Convergence solution [13]. By considering the neighboring devices
as well, the overall compute resource availability increases further, and the computation burden on the
cloud can be reduced significantly. To support task distribution among the neighboring devices, the
device/cloud collaboration framework implements discovery of devices (Device/Cloud Discovery in
Fig. 3.1). Suppose a device (device-A) wants to collaborate with its neighboring device (device-B),
which is not equipped with appropriate application components to process a given task. Then, device-
A can transfer the necessary application components to device-B through the Application Component
Sharing (shown in Fig. 3.1).

3.3.3 PRIVACY-PROTECTION SOLUTION
So far, we have focused on the aspects of the device/cloud collaboration framework that are con-
cerned with performance and efficiency. Now, we turn our attention to the privacy-protection problem.
Suppose we want to provide a location-based service to the users. To provide this service, location data
such as the visited GPS coordinates, the point of interest (POI), and the time of visit have to be col-
lected first. Based on these location data, the mobility pattern and the interest of individual users can be
inferred. However, these data contain personal information. Hence, for these data, we can ask the user
to decide whether to transfer them to cloud or not when accepting the location-based service. Based
on the decision made by the user, our framework can assess the expected service-quality for the users.
Suppose a user wants to transfer to the cloud a blurred location log with entries that are simply labeled
either <at home> or <not at home>. Given this log with little detail, it is difficult to expect a service
provider to offer a useful location-based recommendation. In such a case, our framework warns the
user that disallowing the sharing of detailed private information would result in poor service quality.

Our framework employs the technology of protecting privacy by sandboxing hierarchically organized
application-data [14]. This technology, implemented in the Hierarchical Data Sandboxing module (in
Fig. 3.1), supports the user to explicitly specify a group of data in the hierarchy to be shared with the
cloud or not. The group of data that is set to be kept only within a device will be protected by sandbox-
ing. Although this approach supports a specification of fine-grained privacy-protection policies, such a

533.3 DEVICE/CLOUD COLLABORATION FRAMEWORK

declarative approach would be too cumbersome for many typical users. Thus, we can seek an alternative
solution of obfuscating (encrypting) data to be transferred to the neighboring devices or to the cloud
(Data Obfuscation in Fig. 3.1). A natural solution is to encrypt the data upon transferring to cloud [15].
However, the encrypted data can be revealed through decryption-key theft from the compromised servers
on the cloud or by spoofing on the tapped network. For these security threats, the cost of countermeasures,
such as secret (eg, decryption keys) sharing across replicated servers, is nonnegligible [16]. Instead, we
can have a lighter approach of letting the cloud analyze the obfuscated data without deciphering it, and
letting the device revert the obfuscated part of the analysis result generated at the cloud side. For instance,
suppose a user wants to receive a location-based recommendation based on the personal log of visited
POIs. Both the POI itself and the time of POI visits are first obfuscated on the device side. The mapping
between the original data and the encrypted data is kept on the device side. The device sends over the
encrypted data to the cloud that does not have a decryption key to decipher the encrypted data. On the
cloud side, data analytics such as causal reasoning through sequence mining [17] are conducted, based
on the encrypted information (eg, POIs and time of visits). For example, suppose a user has the following
entries in the location log, as shown in Table 3.1. Each entry contains the mapping between the original
data and the encrypted data.

Note that the cloud has to be aware of the data format, that is, the data contains POI and the time of
visits. Assume that the sequence-mining engine on the cloud side infers the frequent mobility pattern
that the user visits: b731d61a5be2b9035a20ebef5aa9bfef (actually Bryant Park) after the user visits:
24e3b66da54d1e21b177ea3351a0e4c2 (actually Starbucks). The cloud notifies this inference result to
the device without knowing the actual private content. Once the device receives this result, it deciphers
the content by checking the mapping between the encrypted data and the original data. Given the in-
ferred mobility pattern, the device can invoke a third-party recommendation service to receive a list of
recommended activities or events around Bryant Park whenever the user is about to leave Starbucks.
Here, we assume a threat model that the third-party recommendation service independently enforces
its own security measures to prevent the leakage of private queries, and the device itself is safe from
being compromised.

Another approach is abstracting given data to hide the details, as shown in Table 3.2.

Table 3.1 A Mapping Between Original and Encrypted Location Data

Original Data Encrypted Data

Starbucks on 575 5th Avenue, New York, NY, 11 am, Jan.
15th, 2015

24e3b66da54d1e21b177ea3351a0e4c2,
a44cdcecb384fd730553e59eed867e63

Bryant Park in New York, NY, 1 pm, Jan. 15th, 2015 b731d61a5be2b9035a20ebef5aa9bfef,
84d9cfc2f395ce883a41d7ffc1bbcf4e

Table 3.2 Mapping Between the Original and Abstracted Location Data

Original Data Abstracted Data

Starbucks on 575 5th Avenue, New York, NY, 11 am, Jan. 15th, 2015 Café in the morning

Bryant Park in New York, NY, 1 pm, Jan. 15th, 2015 Public park in the afternoon

54 CHAPTER 3 INTELLIGENCE APPLICATIONS

For example, a visit to Starbucks on 575 5th Avenue, New York, NY at 11 am can be abstracted as
a visit to a café in the morning. The benefit of this approach is that it can generate recommendations
directly on the cloud upon recognition of the frequent visiting patterns. However, the accuracy of the
recommendation can be compromised due to the loss of detailed information.

3.4 APPLICATIONS OF DEVICE/CLOUD COLLABORATION
In this section, we show how our framework can be used by the real-world intelligence applications
developed specifically at Samsung Electronics. The selected applications offer the following func-
tionalities: context-aware proactive suggestion, semantic QA caching, and automatic image/speech
recognition. We introduce the interesting practical engineering experiences of adapting the application
in order to leverage the framework in the most effective manner.

3.4.1 CONTEXT-AWARE PROACTIVE SUGGESTION
Based on the personal data collected on each mobile device, we have devised Proactive Suggestion
(PS), an application that makes context-aware recommendations. In Fig. 3.2, the individual compo-
nents of the PS are laid out.

Analytics engines of PS produce hierarchical personal data that are interdependent to each other.
Raw data such as GPS coordinates, call logs, application usage, and search queries are fed to a Cooc-
currence Analysis engine, which is responsible for identifying activities that occurred at the same

FIGURE 3.2 High-Level Layout of the Core Components for the Proactive Suggestion Application

Analytics engines process personal data to produce contextual data that are used for multilevel recommendations to
the end user.

553.4 APPLICATIONS OF DEVICE/CLOUD COLLABORATION

time [18]. For example, the cooccurrence analysis engine may recognize that a user listens to live
streaming music while walking in the park. Given such cooccurrence data, the Sequence Mining engine
can infer causal relationships between personal activities that occurred over time [19]. The recognized
sequential patterns can be fed into the Predictive Analysis engine to assess the probability of a particu-
lar activity taking place in a certain context [19].

Fig. 3.3 illustrates how PS implements the device/cloud collaboration framework. The master
device can discover neighboring devices that the end user is authorized to use (Device Discovery).
The master device can send over the data to one of the neighboring devices that has sufficient
compute capacity (Device Binding). The neighboring device can retrieve an appropriate analytics
engine for processing the data sent by the master device (Application Component Sharing). In this
example, the highlighted pieces of data on the master device are shared between cloud and neigh-
boring devices.

Note that the PS application initially opted for the Hierarchical Data Sandboxing for an explicit
and declarative privacy-protection method. We could not afford to run an alternative privacy-protection
method based on the data obfuscation, due to the limited resources on the device that was already
bogged down by the analytics work. However, recall that our framework is flexible enough to allow
user-defined cost functions. For example, if the cost of running an analytics operation (eg, the cost of
consuming battery life) is excessive, then the Device/Cloud Selection module in the framework may
decide to transfer the analytics task to the cloud or simply wait for the battery level to rise above the
configured thresholds. It turned out that transferring the data over the network consumed as much
energy as running the analytics operation within the device. Thus, the Device/Cloud Selection module
opted for waiting until the battery got charged above the configured level.

FIGURE 3.3 An Example of Utilizing the Device-Collaboration Framework for the Proactive Suggestion Application

56 CHAPTER 3 INTELLIGENCE APPLICATIONS

3.4.2 SEMANTIC QA CACHE
Semantic QA cache is a mobile application that retrieves answers to a given query from the cache filled
with answers to the semantically similar queries issued in the past. Semantic QA cache can be useful
when there is no Internet connectivity or when the user is not in favor of transferring private queries to
the cloud. Fig. 3.4 illustrates how the semantic QA cache is managed. Semantic QA cache returns a list
of similar queries and the associated answers. Semantic QA cache constantly updates ranking function
based on the word-translation table as explained in [20]. The ranking function measures the similarity
between a newly issued query and the queries measured in the past.

In Fig. 3.5, we have demonstrated the implementation of the device/cloud collaboration frame-
work by the semantic QA cache. Specifically, we have devised a custom ASR (Automatic Speech
Recognition) engine for the mobile device and incorporated the cloud system for Samsung S Voice in the
collaboration framework. The cloud system for S Voice consists of a Natural Language Understanding
(NLU) module for query understanding, a DM (Dialog Manager) module for query answering, and a
powerful ASR engine.

Note that we have adapted the framework to compute the probability of the on-device semantic QA
cache to answer a given query correctly. If the probability is high enough, the Device/Cloud Selection mod-
ule will take the risk of looking up the semantic QA cache for an answer. If the cache does not return the right
answer and forces the user to ask the cloud again, then our framework will adjust the probability accordingly.

We evaluated the performance benefit of using the device/cloud collaboration framework for se-
mantic QA cache. From the log of our voice-based QA application, we obtained the top-50 frequently
issued queries about weather, restaurants, people, and device-specific commands. We selected a ran-
dom query from the set according to uniformly random distribution (Method 1) and Zipf distribution

FIGURE 3.4 Illustrations of the Technique to Cluster Semantically Similar QA Pairs for Retrieving an Answer for a
Newly Given Query Without Asking the QA Engine on the Cloud Side

573.4 APPLICATIONS OF DEVICE/CLOUD COLLABORATION

(Method 2). The latency of getting the response for a query was tested on the cloud-only mode and the
device/cloud collaboration mode. In the cloud-only mode, server-version of Google Voice API was
used for ASR, and DBpedia and Freebase were used for query answering. In the device/cloud collabo-
ration mode, a custom-made ASR engine and semantic QA cache were used, along with a cloud-based
QA service. Leveraging the device/cloud collaboration improved performance for both types of query
workloads. The latency was reduced by 56.7 and 69.5% for Method 1 and Method 2, respectively.

3.4.3 IMAGE AND SPEECH RECOGNITION
Automatically recognizing images and speech can greatly enhance a user’s experience in using appli-
cations. For example, with automatic image recognition, photos taken by a user can be automatically
tagged with metadata and catalogued more easily. Similar to Amazon’s Firefly [21], we have developed
an application called Watch&Go, which lets users obtain detailed information about a product upon
taking a photograph. Fig. 3.6 shows the snapshot of Watch&Go that guides users to properly focus on
some electronics products, and automatically retrieve information such as type, vendor, model name,
and the result of social sentiment about the product.

Practicality of these recognition applications has greatly improved, thanks to the recent advance-
ment of Deep Learning (DL). The DL follows the approach of learning the correlation between the
parameters across multiple layers of perceptron [22]. However, DL model training methods usually
suffer a slow learning curve compared to the other conventional machine-learning methods. Although
it is generally believed that the larger DL model improves the recognition accuracy through a set
of well-refined training data, it has been challenging to acquire adequate parameters when we train
multiple layers at the same time. The recent appearance of the Restricted Boltzmann Machine (RBM)
method, which enables layer-wise and unsupervised training, can relax the aforementioned limitations
to some degree. However, the overall computational overhead is still formidable, even for the cloud
with abundant compute resources. This performance issue has motivated us to utilize our device/cloud
collaboration framework as follows.

Through our framework, the compute-intensive part of DL (ie, the training) is assigned to cloud.
Once the learning completes, our framework ports the recognition model to the device for the actual
execution of the recognition task. Specifically, we used an ImageNet-1000 model that was constructed
based on a Convolutional Neural Networking (CNN) [23,24] method. With this model, classification
of up to 1000 different objects is possible. However, an open-source image-classifier (OpenCV) on
an Android device took more than 20 s to classify an object with ImageNet-1000. This was due to the

FIGURE 3.5 Semantic QA Cache Implementing the Device/Cloud Collaboration Framework

58 CHAPTER 3 INTELLIGENCE APPLICATIONS

inefficient matrix multiplication on the device. We have overcome this problem by parallelizing the
matrix multiplication based on OpenCL [25], resulting in the classification latency dropping to an av-
erage of 400 ms per object. By utilizing the low-latency on-device image classifier on millions of pre-
deployed mobile devices, we were able to reduce the computational burden on the cloud significantly.

We have achieved similar performance improvement for speech-recognition application with DL
through our device/cloud collaboration framework. Specifically, we first extracted 400-h worth of
speech data from Fisher Corpus. Contrary to the image-recognition problem, we have employed a
Deep Neural Network (DNN) model, which is shown to be effective in constructing an accurate acous-
tic model [26]. Similar to image recognition, we have assigned the acoustic model-construction task
and the classification task to cloud and mobile devices, respectively. Specifically, we ported Kaldi
[27] to an Android device in order to process a speech-recognition request based on the constructed
acoustic model. The task separation through our device/cloud collaboration framework and the addi-
tional acceleration through OpenCL helped us obtain the recognition result within 0.9 RT (Real Time),b
which is a tolerable delay for the end users.

We could relieve the computational burden on the cloud side further by splitting the learning portion.
Lightweight models can be constructed within a mobile device. However, the classification accuracy
can be compromised when these models are used. We have observed that the tolerant accuracy level
varies between different end-users. Hence, our framework can be adapted to learn the personal toler-
ance level and determine which model to construct accordingly.

b1RT is the criteria which decides the applicability of speech recognition (the lesser value is the better).

FIGURE 3.6 An Example of Automatically Tagging Recognized Images and Displaying Additional Information
Such as Social Sentiment (eg, Positive or Negative Reviews)

59 REFERENCES

3.5 FUTURE WORK
Various ways of componentizing a given intelligence application come with different trade-offs. A
more fine-grained componentization, as shown in the PS application, may yield more efficient task
distribution among neighboring devices and cloud. Also, fine-grained privacy-protection policies can
be applied to these components. However, computing more efficient task distribution incurs additional
overhead. It may cost relatively lower overhead to determine execution entities for the coarse-grained.
But it can be nontrivial to port a cloud-side coarse-grained component to a resource-limited device
when it is deemed necessary. Even if the coarse-grained component is tailored to fit in the device,
the quality of the component may degrade. As a future work, we plan to study the effect of different
componentization strategies in various application scenarios and guide the developers to pick the best
strategy that maximizes collaboration performance.

3.6 CONCLUSIONS
We have presented the benefits of using a collaborative computation framework between devices and
cloud through the case studies of selected real-world intelligence applications devised at Samsung
Electronics. Applications that implement the device/cloud collaboration framework can yield high per-
formance, such as reduced latency in processing a user’s request. In addition, the cost of managing the
cloud can be reduced when the compute resources on the millions of smart mobile devices are utilized.
Aside from the benefits in terms of cost and performance, the framework helps the application protect
privacy of the end users by either processing personal data within a device or analyzing the obfuscated
version of the personal data on cloud.

ACKNOWLEDGMENTS
This chapter is derived from the authors’ work from The Grand Bleu Project that was conducted by Intelligence
Solution Team (IST) at Samsung Electronics in 2014. We would like to thank Dr Kilsu Eo, who directed IST and
initiated The Grand Bleu Project. We are also grateful for the guidance provided by the project leaders, Dr Honguk
Woo and Dr Sangho Shin.

REFERENCES
 [1] Amazon Elastic Compute Cloud (Amazon EC2). https://aws.amazon.com/ec2
 [2] Microsoft Azure: Cloud Computing Platform & Services. https://azure.microsoft.com
 [3] Google Now. https://www.google.com/landing/now
 [4] Wang C, Raina R, Fong D, Zhou D, Han J, Badros G. Learning relevance from a heterogeneous social

network and its application in online targeting. In: Proceedings of the thirty-fourth international ACM SIGIR
conference on research and development in information retrieval. Beijing, China, July 24–28, 2011.

 [5] Backstrom L, Sun E, Marlow C. In: Proceedings of the nineteenth international conference on World Wide
Web, Raleigh, NC, USA, April 26–30, 2010.

 [6] Sotomayor B, Montero R, Llorente I, Foster I. Virtual infrastructure management in private and hybrid clouds.
IEEE Internet Comput 2009;13(5):14–22.

https://aws.amazon.com/ec2
https://azure.microsoft.com/
https://www.google.com/landing/now
http://refhub.elsevier.com/B978-0-12-805395-9.00003-4/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00003-4/ref0010

60 CHAPTER 3 INTELLIGENCE APPLICATIONS

 [7] Bossche R, Vanmechelen K, Broeckhove J. Cost-optimal scheduling in hybrid IaaS clouds for deadline
constrained workloads. In: Proceedings of the 2010 IEEE third international conference on cloud computing,
Miami, FL, USA, July 5–10, 2010.

 [8] Briscoe G, Marinos A. Digital ecosystems in the clouds: towards community cloud computing. In: Proceedings
of the third IEEE international conference on digital ecosystems and technologies. Istanbul, Turkey, June 1–3,
2009.

 [9] 2014 Celebrity Photo Hack. https://en.wikipedia.org/wiki/2014_celebrity_photo_hack
[10] emarketer.com. http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/

1011694
[11] Cox DR. The regression analysis of binary sequences. J R Stat Soc Ser B Methodol 1958;20(2):215–42.
[12] Econsultancy.com. https://econsultancy.com/blog/64464-more-than-40-of-online-adults-are-multi-device-users-

stats/
[13] Samsung AllShare Play. http://www.samsung.com/us/2012-allshare-play/
[14] Lee S, Wong E, Goel D, Dahlin M, Shmatikov V. PiBox: a platform for privacy preserving apps. In: Proceedings

of the 2013 tenth USENIX conference on networked system design and implementation, Lambard, IL, USA,
April 2–5, 2013.

[15] Pearson S, Shen Y, Mowbray M. A privacy manager for cloud computing. In: Proceedings of the first
international conference on cloud computing. Bangalore, India, September 21–25, 2009.

[16] Itani W, Kayssi A, Chehab A. Privacy as a service: privacy-aware data storage and processing in cloud
computing architectures. In: Proceedings of the eighth IEEE international conference on dependable,
autonomic and secure computing. Chengdu, China, December 12–14, 2009.

[17] Agrawal R, Srikant R. Mining sequential patterns. In: Proceedings of the eleventh international conference on
data engineering. Taipei, Taiwan, March 6–10, 1995.

[18] Srinivasan V, Moghaddam S, Mukherji A, Rachuri KK, Xu C, Tapia EM. MobileMiner: mining your frequent
patterns on your phone. In: Proceedings of the 2014 ACM international joint conference on pervasive and
ubiquitous computing. Seattle, USA, September 13–17, 2014.

[19] Mukherji A, Srinivasan V, Welbourne E. Adding intelligence to your mobile device via on-device sequential
pattern mining. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous
computing: adjunct publication. Seattle, USA, September 13–17, 2014.

[20] Xue X, Jeon J, Croft W. Retrieval models for question and answer archives. In: Proceedings of the thirty-
first annual international ACM SIGIR conference on research and development in information retrieval.
Singapore, July 20–24, 2008.

[21] Amazon Firefly. https://developer.amazon.com/public/solutions/devices/fire-phone/docs/understanding-firefly
[22] Bengio Y, Goodfellow I, Courville A. Deep learning. USA: MIT Press; 2015.
[23] Hinton G. A practical guide to training restricted Boltzmann machine. Technical Report UTML TR 2010-003,

Dept. of Computer Science, Univ. of Toronto; 2010.
[24] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. In:

Proceedings of the twenty-sixth annual conference on neural information processing systems (NIPS), Lake
Tahoe, NV, USA, December 3–8, 2012.

[25] OpenCL (Open Computing Language). https://www.khronos.org/opencl/
[26] Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks. In: Proceedings

of IEEE international conference on acoustics, speech and signal processing (ICASSP). Vancouver, BC,
Canada, May 26–31, 2013.

[27] Kaldi Project. http://kaldi-asr.org/

https://en.wikipedia.org/wiki/2014_celebrity_photo_hack
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://refhub.elsevier.com/B978-0-12-805395-9.00003-4/ref0015
https://econsultancy.com/blog/64464-more-than-40-of-online-adults-are-multi-device-users-stats/
https://econsultancy.com/blog/64464-more-than-40-of-online-adults-are-multi-device-users-stats/
http://www.samsung.com/us/2012-allshare-play/
https://developer.amazon.com/public/solutions/devices/fire-phone/docs/understanding-firefly
http://refhub.elsevier.com/B978-0-12-805395-9.00003-4/ref0020
https://www.khronos.org/opencl/
http://kaldi-asr.org/

61

CHAPTER

FOG COMPUTING:
PRINCIPLES,
ARCHITECTURES,
AND APPLICATIONS

A.V. Dastjerdi*, H. Gupta**, R.N. Calheiros*, S.K. Ghosh**, R. Buyya*,†

*Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information

Systems, The University of Melbourne, Australia; **Department of Computer Science and Engineering,

Indian Institute of Technology, Kharagpur, India; †Manjrasoft Pty Ltd, Australia

4.1 INTRODUCTION
Internet of Things (IoT) environments consist of loosely connected devices that are connected through
heterogeneous networks. In general, the purpose of building such environments is to collect and pro-
cess data from IoT devices in order to mine and detect patterns, or perform predictive analysis or op-
timization, and finally make smarter decisions in a timely manner. Data in such environments can be
classified into two categories [1]:

• Little Data or Big Stream: transient data that is captured constantly from IoT smart devices
• Big Data: persistent data and knowledge that is stored and archived in centralized cloud storage

IoT environments, including smart cities and infrastructures, need both Big Stream and Big Data
for effective real-time analytics and decision making. This can enable real-time cities [2] that are
capable of real-time analysis of city infrastructure and life, and provides new approaches for gov-
ernance. At the moment, data is collected and aggregated from IoT networks that consist of smart
devices, and is sent uplink to cloud servers, where it is stored and processed. Cloud computing offers
a solution at the infrastructure level that supports Big Data Processing. It enables highly scalable
computing platforms that can be configured on demand to meet constant changes of application re-
quirements in a pay-per-use mode, reducing the investment necessary to build the desired analytics
application. As mentioned previously, this perfectly matches requirements of Big Data processing
when data is stored in centralized cloud storage. In such a case, processing of a large magnitude of
data volume is enabled by on-demand scalability of Clouds. However, when data sources are dis-
tributed across multiple locations and low latency is indispensable, in-cloud data processing fails to
meet the requirements.

4

62 CHAPTER 4 FOG COMPUTING

4.2 MOTIVATING SCENARIO
A recent analysis [3] of Endomondo application, a popular sport-activity tracking application, has
revealed a number of remarkable observations. The study shows that a single workout generates
170 GPS tuples, and the total number of GPS tuples can reach 6.3 million in a month’s time. With
30 million users (as shown in Fig. 4.1), the study shows that generated data flows of Endomondo can
reach up to 25,000 tuples per second. Therefore, one can expect that data flows in real-time cities
with many times more data sources—GPS sensors in cars to air- and noise-pollution sensors—can
easily reach millions of tuples per second. Centralized cloud servers cannot deal with flows with
such velocity in real time. In addition, a considerable numbers of users, due to privacy concerns, are
not comfortable to transfer and store activity-track-data into the cloud, even if they require a statisti-
cal report on their activities. This motivates the need for an alternative paradigm that is capable of
bringing the computation to more computationally capable devices that are geographically closer to
the sensors than to the clouds, and that have connectivity to the Internet. Such devices, which are at
the edge of the network and therefore referred to as edge devices, can build local views of data flows
and can aggregate data to be sent to the cloud for further offline analysis. To this end, Fog computing
has emerged.

FIGURE 4.1 Endomondo has 30 Million Users Around the Globe, Generating 25,000 Records per Second

Centralized processing of the data flow of this magnitude neither satisfies latency constraints of users nor their
privacy constraints.

634.3 DEFINITIONS AND CHARACTERISTICS

4.3 DEFINITIONS AND CHARACTERISTICS
We define Fog computing as a distributed computing paradigm that fundamentally extends the services
provided by the cloud to the edge of the network (as shown in Fig. 4.2). It facilitates management and
programming of compute, networking, and storage services between data centers and end devices.
Fog computing essentially involves components of an application running both in the cloud as well
as in edge devices between sensors and the cloud, that is, in smart gateways, routers, or dedicated fog
devices. Fog computing supports mobility, computing resources, communication protocols, interface
heterogeneity, cloud integration, and distributed data analytics to address requirements of applications
that need low latency with a wide and dense geographical distribution.

Advantages associated with Fog computing including the following:

• Reduction of network traffic: Cisco estimates that there are currently 25 billion connected
devices worldwide, a number that could jump to 50 billion by 2020. The billions of mobile
devices such as smart phones and tablets already being used to generate, receive, and send data
make a case for putting the computing capabilities closer to where devices are located, rather
than having all data sent over networks to central data centers. Depending on the configured
frequency, sensors may collect data every few seconds. Therefore, it is neither efficient nor
sensible to send all of this raw data to the cloud. Hence, fog computing benefits here by
providing a platform for filter and analysis of the data generated by these devices close to the
edge, and for generation of local data views. This drastically reduces the traffic being sent to
the cloud.

• Suitable for IoT tasks and queries: With the increasing number of smart devices, most of the
requests pertain to the surroundings of the device. Hence, such requests can be served without
the help of the global information present at the cloud. For example, the aforementioned sports-
tracker application Endomondo allows a user to locate people playing a similar sport nearby.

FIGURE 4.2 Fog Computing is a Distributed Computing Paradigm That Extends the Cloud Services to the Edge
of the Network

64 CHAPTER 4 FOG COMPUTING

Because of the local nature of the typical requests made by this application, it makes sense that
the requests are processed in fog rather than cloud infrastructure. Another example can be a
smart-connected vehicle which needs to capture events only about a hundred meters from it. Fog
computing makes the communication distance closer to the physical distance by bringing the
processing closer to the edge of the network.

• Low-latency requirement: Mission-critical applications require real-time data processing. Some of
the best examples of such applications are cloud robotics, control of fly-by-wire aircraft, or anti-
lock brakes on a vehicle. For a robot, motion control depends on the data collected by the sensors
and the feedback of the control system. Having the control system running on the cloud may make
the sense-process-actuate loop slow or unavailable as a result of communication failures. This is
where fog computing helps, by performing the processing required for the control system very
close to the robots—thus making real-time response possible.

• Scalability: Even with virtually infinite resources, the cloud may become the bottleneck if all
the raw data generated by end devices is continually sent to it. Since fog computing aims at
processing incoming data closer to the data source itself, it reduces the burden of that processing
on the cloud, thus addressing the scalability issues arising out of the increasing number of
endpoints.

4.4 REFERENCE ARCHITECTURE
Fig. 4.3 presents a reference architecture for fog computing. In the bottommost layer lays the end
devices (sensors), as well as edge devices and gateways. This layer also includes apps that can be
installed in the end devices to enhance their functionality. Elements from this layer use the next layer,
the network, for communicating among themselves, and between them and the cloud. The next layer
contains the cloud services and resources that support resource management and processing of IoT
tasks that reach the cloud. On top of the cloud layer lays the resource management software that man-
ages the whole infrastructure and enables quality of Service to Fog Computing applications. Finally,
the topmost layer contains the applications that leverage fog computing to deliver innovative and intel-
ligent applications to end users.

Looking inside the Software-Defined Resource Management layer, it implements many middleware-
like services to optimize the use of the cloud and Fog resources on behalf of the applications. The goal
of these services is to reduce the cost of using the cloud at the same time that performance of applica-
tions reach acceptable levels of latency, by pushing task execution to Fog nodes. This is achieved with
a number of services working together, as follows.

• Flow and task placement: This component keeps track of the state of available cloud, Fog,
and network resources (information provided by the Monitoring service) to identify the best
candidates to hold incoming tasks and flows for execution. This component communicates with
the Resource-Provisioning service to indicate the current number of flows and tasks, which may
trigger new rounds of allocations if deemed too high.

• Knowledge Base: This component stores historical information about application demands
and resource demands that can be leveraged by other services to support their decision-making
process.

654.4 REFERENCE ARCHITECTURE

• Performance Prediction: This service utilizes information of the Knowledge- Base service to
estimate the performance of available cloud resources. This information is used by the Resource-
Provisioning service to decide the amount of resources to be provisioned, in times where there are
a large number of tasks and flows in use or when performance is not satisfactory.

• Raw-Data Management: This service has direct access to the data sources and provides views
from the data for other services. Sometimes, these views can be obtained by simple querying
(eg, SQL or NOSQL REST APIs), whereas other times more complex processing may be required
(eg, MapReduce). Nevertheless, the particular method for generation of the view is abstracted
away from other services.

• Monitoring: This service keeps track of the performance and status of applications and services,
and supplies this information to other services as required.

• Profiling: This service builds resource- and application-profiles based on information obtained
from the Knowledge Base and Monitoring services.

• Resource Provisioning: This service is responsible for acquiring cloud, Fog, and network
resources for hosting the applications. This allocation is dynamic, as the requirements of
applications, as well as the number of hosted applications, changes over time. The decision on
the number of resources is made with the use of information provided by other services (such
as Profiling, Performance Prediction, and Monitoring), and user requirements on latency, as well

FIGURE 4.3 Fog Computing Reference Architecture

66 CHAPTER 4 FOG COMPUTING

as credentials managed by the Security service. For example, the component pushes tasks with
low-latency requirements to edge of network as soon as free resources are available.

• Security: This service supplies authentication, authorization, and cryptography, as required by
services and applications.

Note that all of the elements and services described are reference elements only; complete fog
stacks and applications can be built without the use of all of the elements, or can be built with other
elements and services not present in Fig. 4.3.

4.5 APPLICATIONS
As demonstrated in Fig. 4.4, there is a variety of applications benefiting from the Fog-computing para-
digm. We discuss the major applications first, and then we elaborate more on enablers and related work
in the area.

4.5.1 HEALTHCARE
Cao et al. [4] propose FAST, a fog-computing assisted distributed analytics system, to monitor fall for
stroke patients. The authors have developed a set of fall-detection algorithms, including algorithms
based on acceleration measurements and time-series analysis methods, as well as filtering techniques to
facilitate the fall-detection process. They designed a real-time fall-detection system based on fog com-
puting that divides the fall-detection task between edge devices and the cloud. The proposed system
achieves a high sensitivity and specificity when tested against real-world data. At the same time, the
response time and energy consumption are close to the most efficient existing approaches.

Another use of fog computing in healthcare has been brought out by Stantchev et al. [5]. They
proposed a three-tier architecture for a smart-healthcare infrastructure, comprised of a role model,
layered-cloud architecture, and a fog-computing layer, in order to provide an efficient architecture for
healthcare and elderly-care applications. The fog layer improves the architecture by providing low la-
tency, mobility support, location awareness, and security measures. The process flow of the healthcare
application is modeled using Business Process Model and Notation (BPMN) and is then mapped to
devices via a service-oriented approach. The validity of the architectural model has been demonstrated
by a use case as a template for a smart sensor-based healthcare infrastructure.

4.5.2 AUGMENTED REALITY
Augmented reality applications are highly latency-intolerant, as even very small delays in response can
damage the user experience. Hence, fog computing has the potential to become a major player in the
augmented reality domain. Zao et al. [6] built an Augmented Brain Computer Interaction Game based
on Fog Computing and Linked Data. When a person plays the game, raw streams of data collected by
EEG sensors are generated and classified to detect the brain state of the player. Brain-state classifica-
tion is among the most computationally heavy signal-processing tasks, but this needs to be carried out
in real time. The system employs both fog and cloud servers, a combination that enables the system
to perform continuous real-time brain-state classification at the fog servers, while the classification
models are tuned regularly in the cloud servers, based on the EEG readings collected by the sensors.

674.5 APPLICATIONS

Ha et al. [7] propose a Wearable Cognitive Assistance system based on Google Glass devices
that assist people with reduced mental acuity. Because of the nature of cognitive devices with con-
strained resources, the compute-intensive workloads of this application need to be offloaded to an ex-
ternal server. However, this offloading must provide crisp, real-time responses; failing to do so would
be detrimental to the user experience. Offloading the compute-intensive tasks to the cloud incurs a
considerable latency, thus the authors make use of nearby devices. These devices may communicate
with the cloud for delay-tolerant jobs like error reporting and logging. The aforementioned works are

FIGURE 4.4 Range of Applications Benefiting From Fog Computing

68 CHAPTER 4 FOG COMPUTING

typical applications of fog computing, in that they perform latency-critical analysis at the very edge and
latency-tolerant computation at the cloud—thus portraying fog as an extension of cloud.

4.5.3 CACHING AND PREPROCESSING
Zhu et al. [8] discuss the use of edge servers for improving web sites’ performance. Users connect to
the Internet through fog boxes, hence each HTTP request made by a user goes through a fog device.
The fog device performs a number of optimizations that reduces the amount of time the user has to
wait for the requested webpage to load. Apart from generic optimizations like caching HTML com-
ponents, reorganizing webpage composition, and reducing the size of web objects, edge devices also
perform optimizations that take user behavior and network conditions into account. For example, in
case of network congestion, the edge device may provide low resolution graphics to the user in order
to reach acceptable response times. Furthermore, the edge device can also monitor the performance of
the client machines, and, depending on the browser rendering times, send graphics of an appropriate
resolution.

One of the major advantages of fog computing is linking IoT and cloud computing. This integra-
tion is not trivial and involves several challenges. One of the most important challenges is data trim-
ming. This trimming or pre-processing of data before sending it to the cloud will be a necessity in IoT
environments because of the huge amount of data generated by these environments. Sending huge
volumes of raw data to the cloud will lead to both core-network and data-center congestion. To meet
the challenge of pre-processing, Aazam et al. [9] propose a smart gateway-based communication for in-
tegrating IoT with cloud computing. Data generated by IoT devices is sent to the smart gateway, either
directly (one-hop) or through sink nodes (multi-hop). The smart gateway handles the pre-processing
required before sending the data to the cloud. In the architecture proposed by the authors, the smart
gateway is assisted by fog-computing services for operations on IoT data in a latency-sensitive and
context-aware manner. Such a communication approach paves the way for the creation of a richer and
better user experience for IoT applications.

4.6 RESEARCH DIRECTIONS AND ENABLERS
To realize the full potential of the Fog paradigm, researchers and practitioners need to address the fol-
lowing major challenges, which are outlined next.

4.6.1 PROGRAMMING MODELS
Computation offloading has been an active area of research in the mobile computing domain, with
most of the proposals offloading workloads to the cloud [7,10,11]. Since offloading to the cloud may
not always be possible or reasonable, Orsini et al. [12] propose an adaptive Mobile Edge Computing
(MEC) programming framework named CloudAware [12], which offloads tasks to edge devices, thus
facilitating the development of elastic and scalable edge-based mobile applications. The authors pres-
ent the types of components that an MEC application should be broken into, so that the offloading
decision is simplified. The framework offloads tasks, with objectives to: (1) speed up computation, (2)
save energy, (3) save bandwidth, or (4) provide low latency.

694.6 RESEARCH DIRECTIONS AND ENABLERS

The most fundamental development in the realm of Fog Computing has been made by Mobile Fog
[13], an API for developing futuristic applications, which leverages the large-scale, geo-distribution,
and low-latency guarantee provided by the fog-computing infrastructure. The proposed architecture is
a hierarchy similar to the one demonstrated in Fig. 4.3. An application built using the proposed API has
several components, each one running on a different level in the hierarchy of devices.

4.6.2 SECURITY AND RELIABILITY
Enforcing security protocols over a distributed system such as a fog is one of the most important
challenges in its realization. Stojmenovic et al. [14] discuss the major security issues in fog com-
puting. They point out that calling authentication at various levels of fog nodes is the main security
challenge. Authentication solutions based on Public Key Infrastructure [1] may prove beneficial for
this problem. Trusted execution environment (TEE) techniques [2,3] are potential solutions to this
authentication problem in fog computing as well. Measurement-based methods may also be used to
detect rogue devices and hence reduce authentication cost [3,15].

Dsouza et al. [16] describe the research challenges in policy management for fog computing, and
propose a policy-driven security-management approach, including policy analysis and its integration
with a fog-computing paradigm. Such an approach is critical for supporting secure sharing and data
reuse in heterogeneous Fog environments. The authors also present a use case on Smart Transportation
Systems to highlight the efficiency of the proposed approach.

Since fog computing is realized by the integration of a large number of geographically distrib-
uted devices and connections, reliability is one of the prime concerns when designing such a system.
Madsen et al. [17] discuss the reliability issues associated with fog computing. They point out that for a
reliable fog paradigm it is essential to plan for failure of individual sensors, network, service platform,
and the application. To this end, the current reliability protocols for WSNs can be applied. They majorly
deal with packet reliability and event reliability. The most basic facts about sensors, in general, are not
that they are expensive, but that their readings can be affected by noise; in this case the information-
accuracy problem can be resolved by redundancy.

4.6.3 RESOURCE MANAGEMENT
Fog devices are often network devices equipped with additional storage and compute power. However,
it is difficult for such devices to match the resource capacity of traditional servers, let alone the cloud.
Hence a judicious management of resources is essential for an efficient operation of a fog-computing
environment. Aazam et al. [18] present a service-oriented resource management model for fog comput-
ing, which performs efficient and fair management of resources for IoT deployments. The proposed
resource-management framework predicts the resource usage of customers and pre-allocates resources
based on user behavior and the probability of using it in the future. This prediction allows greater
fairness and efficiency when the resources are actually consumed. Lewis et al. [19] present resource-
provisioning mechanisms for tactical cloudlets, a strategy for providing infrastructure to support com-
putation offloading and data staging at the tactical edge. Cloudlets are discoverable, generic, stateless
servers located in single-hop proximity of mobile devices, which can operate in disconnected mode,
and are virtual-machine (VM) based to promote flexibility, mobility, scalability, and elasticity [20].
In other words, tactical cloudlet refers to the scenario when cloudlets serve as fog devices in order to

70 CHAPTER 4 FOG COMPUTING

provide infrastructure to offload computation, provide forward data-staging for a mission, perform data
filtering to remove unnecessary data from streams intended for dismounted users, and serve as collec-
tion points for data heading for enterprise repositories. Tasks running on cloudlets are executed on Ser-
vice VMs. The authors propose various policies for provisioning VMs on cloudlets, each policy having
a unique implication on payload sent to cloudlet, application-ready time, and client energy spent. In
addition, mechanisms for cloudlet discovery and application execution have also been laid out.

4.6.4 ENERGY MINIMIZATION
Since fog environments involve the deployment of a large number of fog nodes, the computation is es-
sentially distributed and can be less energy-efficient than the centralized-cloud-model of computation.
Hence the reduction of energy consumption in fog computing is an important challenge. Deng et al.
[14] study the trade-off between power consumption and delay in a fog-computing system. They model
the power consumption and delay functions for the fog system and formalize the problem of allocating
workloads between the fog and cloud. Simulation results show that fog computing can significantly cut
down the communication latency by incurring slightly greater energy consumption.

Do et al. [1] study a related problem, namely, joint resource allocation and reduction of energy
consumption for video-streaming service in fog computing. Since the number of fog devices is enor-
mous, a distributed solution for the problem has been proposed to eliminate performance and scalabil-
ity issues. The algorithm is based on proximal algorithms, a powerful method for solving distributed
convex-optimization problems. The proposed algorithm has a fast convergence rate with a reasonable
solution quality.

4.7 COMMERCIAL PRODUCTS
4.7.1 CISCO IOx
Cisco is a pioneer in the field of fog computing, so much so, that the term “fog computing” was actually
introduced by Cisco itself. Cisco’s offering for fog computing, known as IOx, is a combination of an
industry-leading networking operating system, IOS, and the most popular open-source Operating System,
Linux. Ruggedized routers running Cisco IOx make compute and storage available to applications hosted
in a Guest Operating System running on a hypervisor alongside the IOS virtual machine. Cisco pro-
vides an app store, which allows users to download applications to the IOx devices, and also an app-
management console, which is meant for controlling and monitoring the performance of an application.

Using device abstractions provided by Cisco IOx APIs, applications running on the fog can com-
municate with IoT devices that use any protocol. The “bring your own interface” philosophy of IOx
allows effortless integration of novel, specialized communications technology with a common IP archi-
tecture. Fog applications can also send IoT data to the cloud by translating nonstandard and proprietary
protocols to IP.

Cisco IOx has been used by a number of players in the IoT industry to architect innovative solutions
to problems. For example, Rockwell developed FactoryTalk AssetCentre, a centralized tool for secure
tracking and management of automation- related asset information across the entire plant. OSIsystem’s
PI system, an industry standard in enterprise infrastructure for real-time event and data management,
uses Cisco IOx to deploy its data-collection interfaces.

714.7 COMMERCIAL PRODUCTS

4.7.2 DATA IN MOTION
Cisco Data in Motion (DMo) is a technology providing data management and analysis at the edge of
the network. Cisco DMo is built into solutions provided by Cisco and its partners. DMo provides a
simple rule-based RESTful API for building applications. Rules can be added/deleted on the run with-
out any downtime. DMo can be used to perform analysis on incoming data, such as finding specific data
of interest, summarizing data, generating new results from data, and so forth. It is meant to be deployed
on devices in a distributed fashion and control the flood of data originating from the IoT devices.

4.7.3 LocalGrid
LocalGrid’s Fog Computing platform is an embedded software installed on network devices (switches,
routers) and sensors. It standardizes and secures communications between all kinds of devices across
all vendors, thus minimizing customization and service costs. LocalGrid’s platform resides on devices
between the edge and the cloud and provides reliable M2M communication between devices without
having to go through the cloud. This allows applications to make real-time decisions right at the edge
without having to deal with the high latency of communicating with the cloud. Moreover, all LocalGrid
devices can communicate with the cloud through open- communication standards, realizing the con-
cept of fog to be an extension of cloud. Applications running on LocalGrid’s platform can utilize the
interplay between the fog and cloud to solve more complex problems.

LocalGrid’s Fog Computing platform is shipped with LocalGrid vRTU, a software-based virtual
remote-terminal unit that transforms communications between edge devices into compatible open stan-
dards. vRTU can be installed on off-the-shelf as well as through custom solutions from OEMs, endow-
ing devices with RTU capabilities and providing a single point for management of all the edge devices,
thus cutting down on customization and maintenance costs.

4.7.4 ParStream
ParStream is a real-time IoT analytics platform. Cisco and ParStream are working together to build a
fast, reliable, and highly scalable infrastructure for analysis on the fog. Cisco is planning to use this
infrastructure to enhance its current offerings and provide new types of services.

ParStream’s offering of a Big Data Analytics Platform for IoT is contingent on its patented database
technology, ParStream DB. ParStream DB is a column-based in-memory database with a highly paral-
lel and fault-tolerant architecture, which is built using patented indexing and compression algorithms.
Being an in-memory database, it is ideal for fog devices—which typically limit disk space. ParStream
can push down query execution to the edge where data is produced, and perform analytics in a highly
distributed fashion. Furthermore, ParStream has a considerably small footprint, making it feasible to be
deployed on embedded devices and fog-enabled devices such as Cisco IOx.

4.7.5 PRISMTECH VORTEX
VORTEX is a ubiquitous data-sharing platform made for IoT. It provides scalable end-to-end seamless,
efficient, secure, and timely data-sharing across IoT-supporting devices, edges, gateways, and cloud.

VORTEX leverages the DDS 2.0 standard for interoperable data-sharing and extends it to support
Internet Scale systems, mobility, and Web 2.0 applications. VORTEX also seamlessly integrates with

72 CHAPTER 4 FOG COMPUTING

common IoT message-passing protocols such as MQTT and CoAP. In addition, to address security and
privacy requirements, VORTEX provides support for fine-grained access control and both symmetric
and asymmetric authentication.

Each IoT device is connected to a Vortex edge device that executes all of Vortex’s software. Each
piece of software performs a function necessary for the realization of a globally shared DDS. A Vortex
edge device with the IoT device connected to it forms a domain (a DDS entity), called fog-domain in
this context. Equipped with such devices, VORTEX supports a number of deployment models.

• Fog + Cloud: IoT devices inside a fog-domain communicate with each other in a peer-to-peer
fashion. Those across fog-domains need to communicate through the cloud.

• Fog + Cloud-Link + Cloud: Similar to the previous model, devices within the same fog-domain
communicate peer-to-peer, whereas devices not in the same fog-domain exchange data through
the cloud using a Cloud Link that handles the associated security issues and controls what
information is exposed.

• Federated Fog: Each fog-domain has a Vortex Cloud-link running on the Vortex device. Federated
Fog is a collection of fog domains, which are federated by Cloud-link instances. Information
exchanged between fog-domains is controlled by Cloud-link instances.

4.8 CASE STUDY
A smart city is one of the key use-cases of IoT, which in itself is a combination of a variety of use cases,
ranging from smart traffic management to energy management of buildings. In this section, we pres-
ent a case study on smart traffic management and show that employing fog computing improves the
performance of the application in terms of response time and bandwidth consumption. A smart traffic-
management system can be realized by a set of stream queries executing on data generated by sensors
deployed throughout the city. Typical examples of such queries are real-time calculation of congestion
(for route planning), and detection of traffic incidents. In this case study, we compare the performance
of a query DETECT_TRAFFIC_INCIDENT (as shown in Fig. 4.5) on fog infrastructure versus the
typical cloud implementation.

In the query, the sensors deployed on the roads send the speed of each crossing vehicle to the query
processing engine. The operator “Average Speed Calculation” calculates the average speed of vehicles
from the sensor readings over a given timeframe and sends this information to the next operator. The
operator “Congestion Calculation” calculates the level of congestion in each lane based on the average
speed of vehicles in that lane. The operator “Incident Detection,” based on the average level of conges-
tion, detects whether or not an incident has occurred. This query was simulated on both a fog-based as
well as a cloud-based stream query-processing engine. The comparison of both strategies is presented
in the next sections.

FIGURE 4.5 Dag of Query for Incident Detection

734.8 CASE STUDY

4.8.1 EXPERIMENT SETUP
4.8.1.1 Network Topology and Data Sources
The network topology used for the simulation was a hierarchical topology of fog devices, as described
in [13]. The leaves of the treelike topology are the edge devices (gateways) and the cloud is located at
the root. Intermediate nodes in the tree represent intermediate network devices between the cloud and
the edge, which are able to host applications by utilizing their nascent compute, network, and storage
capacity. Each fog device has both an associated CPU capacity and an associated uplink network band-
width, which shall be utilized for running fog applications on them.

Traffic data fed to simulation was obtained from Sumo [15], a road-traffic simulator. Induction
loops were inserted on the road that measured the speed of vehicles, and the information was sent to
the query processing engine.

The simulation environment was implemented in CloudSim [16] by extending the basic entities in the
original simulator. Fog devices were realized by extending the Datacenter class, whereas stream opera-
tors were modeled as a VM in CloudSim. Furthermore, tuples that were executed by the stream operators
were realized by extending Cloudlets. Fog devices are entities with only one host, whose resources it can
provide for running applications. Each tuple has an associated CPU and network cost for processing it.

4.8.2 PERFORMANCE EVALUATION
4.8.2.1 Average Tuple Delay
Average tuple delay, as the name suggests, is the amount of time (on average) that a tuple takes to
be processed. Fig. 4.6 compares the average end-to-end tuple delay experienced when running the
query on fog against the case when a traditional cluster-based stream processing-engine is used. The

FIGURE 4.6 Comparison of Average End-to-End Tuple Execution Delays

74 CHAPTER 4 FOG COMPUTING

fog stream processing-engine dynamically places operators across fog devices when there is enough
capacity to save bandwidth and minimize latency. As Fig. 4.6 shows, once operators are placed on
fog devices the end-to-end tuple delay falls much below the delay of in-cloud processing, as data are
processed closer to the sources. However, it is worth mentioning that if the operators are not placed
optimally, resource contention in edge devices can cause more delay.

4.8.2.2 Core Network Usage
In this experiment, we compare the core network usage for running the DETECT_TRAFFIC_INCIDENT
query on fog-based and traditional cloud-based stream processing-engines. Fig. 4.7 shows a consider-
ably lower number of tuples traversing the core network once, compared to the traditional cloud-based
stream processing. Thus, running the query on the edge devices reduces the workload coming to the
cloud for processing and also reduces the network usages considerably. However, as we discussed ear-
lier, this reduction in network resource usage and end-to-end latency is only possible if a placement
algorithm is in position to push operators downward when enough capacity is available in edge devices.

4.9 CONCLUSIONS
Fog computing is emerging as an attractive solution to the problem of data processing in IoT. It relies
on devices on the edge of the network that have more processing power than the end devices, and are
nearer to these devices than the more powerful cloud resources, thus reducing latency for applications.

In this chapter, we introduced a reference architecture for IoT and discussed ongoing efforts in the
academia and industry to enable the fog-computing vision. Many challenges still remain though, with
issues ranging from security to resource and energy-usage minimization. Open protocols and architec-
tures are also other topics for future research that will make fog computing more attractive for end users.

FIGURE 4.7 Comparison of Number of Tuples Reaching the Cloud for Processing: A Measure of Bandwidth
Consumption

75 REFERENCES

REFERENCES
 [1] Misra P, Simmhan Y, Warrior J. Towards a practical architecture for the next generation Internet of Things.

arXiv Prepr. arXiv1502.00797; 2015.
 [2] Kitchin R. The real-time city? Big data and smart urbanism. GeoJournal 2014;79(1):1–14.
 [3] Cortés R, Bonnaire X, Marin O, Sens P. Stream processing of healthcare sensor data: studying user traces to

identify challenges from a Big Data perspective. Proc Comput Sci 2015;52:1004–1009.
 [4] Cao Y, Songqing C, Hou P, Brown D. FAST: a fog computing assisted distributed analytics system to monitor

fall for stroke mitigation. 2015 IEEE International Conference on Networking, Architecture and Storage
(NAS), IEEE; 2015, p. 2–11.

 [5] Stantchev V, Barnawi A, Ghulam S, Schubert Johannes, Tamm G. Smart items, fog and cloud computing as
enablers of servitization in healthcare. Sensors Transducers 2015;185(2):121.

 [6] Zao JK, et al. Augmented brain computer interaction based on fog computing and linked data. In: 2014
international conference on intelligent environments (IE); 2014.

 [7] Kosta S, et al. Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code
offloading. In: INFOCOM, 2012 proceedings IEEE; 2012.

 [8] Jiang Z, Chan DS, Prabhu MS, Natarajan P, Hu H, Bonomi F. Improving web sites performance using edge
servers in fog computing architecture. 2013 IEEE 7th International Symposium on Service Oriented System
Engineering (SOSE), IEEE; 2013, p. 320–323.

 [9] Mohammad A, Huh E-N. Fog computing and smart gateway based communication for cloud of things. 2014
International Conference on Future Internet of Things and Cloud (FiCloud), IEEE, 2014; p. 464–470.

[10] Chun BG, et al. Clonecloud: elastic execution between mobile device and cloud. In: Proceedings of the sixth
conference on computer systems (ACM); 2011.

[11] Banerjee A, et al. MOCA: a lightweight mobile cloud offloading architecture. In: Proceedings of the eighth
ACM international workshop on mobility in the evolving Internet architecture; 2013.

[12] Orsini G, Bade D, Lamersdorf W. Computing at the mobile edge: designing elastic Android applications for
computation offloading; 2015.

[13] Hong K, et al. Mobile fog: a programming model for large-scale applications on the Internet of Things. In:
Proceedings of the second ACM SIGCOMM workshop on mobile cloud computing; 2013.

[14] Dsouza C, Ahn GJ, Taguinod M. Policy-driven security management for fog computing: preliminary
framework and a case study. 2014 IEEE 15th International Conference on Information Reuse and Integration
(IRI), IEEE; 2014, p. 16–23.

[15] Behrisch M, et al. SUMO—simulation of urban mobility. In: The third international conference on advances
in system simulation (SIMUL 2011). Barcelona, Spain; 2011.

[16] Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Pract
Exp 2011;41(1):23–50.

[17] Madsen, H, et al. Reliability in the utility computing era: towards reliable fog computing. In: 2013 Twentieth
international conference on systems, signals and image processing (IWSSIP); 2013.

[18] Mohammad A, Huh E-N. Dynamic resource provisioning through Fog micro datacenter. 2015 IEEE
International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops),
IEEE; 2015, p. 105–110

[19] Lewis G, et al. Tactical cloudlets: moving cloud computing to the edge. In: 2014 IEEE military communications
conference (MILCOM); 2014.

[20] Satyanarayanan M, Bahl P, Cáceres R, Davies N. The case for VM-based cloudlets in mobile computing.
IEEE Pervasive Comput 2009;8(4):14–23.

http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00004-6/ref0030

Page left intentionally blank

PART

IoT ENABLERS
AND SOLUTIONS II
5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS 79

6 VIRTUALIZATION ON EMBEDDED BOARDS AS ENABLING TECHNOLOGY FOR THE CLOUD OF THINGS 103

7 MICRO VIRTUAL MACHINES (MicroVMs) FOR CLOUD-ASSISTED CYBER-PHYSICAL SYSTEMS (CPS) 125

Page left intentionally blank

79

CHAPTER

PROGRAMMING
FRAMEWORKS FOR
INTERNET OF THINGS

J. Krishnamurthy, M. Maheswaran
School of Computer Science, McGill University, Montreal, Quebec, Canada

5.1 INTRODUCTION
IoT devices are generally characterized as small things in the real world with limited storage and
processing capacity, which may not be capable of processing a complete computing activity by them-
selves. They may need the computational capabilities of Cloud-based back-ends to complete the
processing tasks and web-based front-ends to interact with the user. The Cloud infrastructure comple-
ments the things [1], by supporting device virtualization, availability, provisioning of resources, data
storage, and data analytics. The IoT by its nature will extend the scope of Cloud computing to the
real world in a more distributed and dynamic way [2]. IoT with Cloud will create new avenues for
computing: huge storage capacity for IoT data in cloud; massive computing capabilities to collect,
analyze, process, and archive those data; and new platforms such as SaaS (Sensing as a Service),
SAaaS (Sensing and Actuation as a Service), and VSaaS (Video Surveillance as a Service) will open
up to users.

With new opportunities, IoT also puts forth a major set of challenges for IoT application develop-
ers. Heterogeneity and the volume of data generated are two of the biggest concerns. Heterogeneity
spans through hardware, software, and communication platforms. The data generated from these de-
vices are generally in huge volume, are in various forms, and are generated at varying speeds. Since
IoT applications will be distributed over a wide and varying geographical area, support for corrective
and evolutionary maintenance of applications will determine the feasibility of application deploy-
ment. Further, some of the IoT applications such as traffic management will be latency-sensitive,
and this warrants edge-processing support by the programming framework. Another difficulty to face
when programming IoT is how to cope with frequent periods of nonavailability of devices, caused by
mobilities and limited energy supplies from batteries. Developing a simplified programming model
that can provide solutions for the above set of challenges will remain a continuous pursuit for the IoT
community.

In this chapter, we explore the technologies that can aid and simplify IoT programming, summarize
some of the key requirements of an IoT programming framework, and present a brief survey on various
programming frameworks that have been recently developed for IoT. The organization of the chapter

5

80 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

is as follows. In Section 5.2, we review the background technologies. In Section 5.3, we present
some of the requirements for an IoT programming framework, along with a survey on general IoT
programming frameworks. Section 5.4 we discuss future research direction, and in Section 5.5 we
conclude the chapter.

5.2 BACKGROUND
5.2.1 OVERVIEW
During the lifecycle of IoT applications, the footprint of an application and the cost of its language
runtime play a huge role in the sustainability of an application. C has been used predominantly in em-
bedded applications development due to its performance; moreover, it can occupy the same position in
IoT programming too. Further, the choice of communication protocols also has a huge implication in
the cost of IoT applications on devices. Remote Procedure Calls (RPC), Representational state transfer
(REST), and Constrained Application Protocol (CoAP) are some of the communication methods that
are being currently incorporated into IoT communication stacks. A complete programming frame-
work in a distributed environment requires not only a stable computing language such as C, but also
a coordination language that can manage communications between various components of an IoT
ecosystem. An explicit coordination language can tackle many of the challenges. It can manage com-
munication between heterogeneous devices, coordinate interaction with the Cloud and devices, handle
asynchronous data arrival, and can also provide support for fault tolerance. The method of using more
than one language in a given application is known as polyglot programming. Polyglot programming
is being widely used in web applications development, and it can provide the same advantages for IoT
programming too.

In this section, we review some of the flavors of C language used in embedded programming, check
adoptability of messaging approaches such as RPC, REST, and CoAP to IoT, explore some of the im-
portant features of various coordination languages, and, in the last part of this section, present the idea
of polyglot programming.

5.2.2 EMBEDDED DEVICE PROGRAMMING LANGUAGES
Although there are various programming languages in the embedded programming domain, the vast
majority of projects, about 80%, are either implemented in C and its flavors, or in a combination of C
and other languages such as C++ [3]. Some of the striking features of C that aid in embedded develop-
ment are performance, small memory foot-print, access to low-level hardware, availability of a large
number of trained/experienced C programmers, short learning curve, and compiler support for the vast
majority of devices [4]. The ANSI C standard provides customized support for embedded program-
ming. Many embedded C-compilers based on ANSI C usually:

1. support low-level coding to exploit the underlying hardware,
2. support in-line assembly code,
3. flag dynamic memory-allocation and recursion,
4. provide exclusive access to I/O registers,

815.2 BACKGROUND

5. support accessing registers through memory pointers, and
6. allow bit-level access.

nesC, Keil C, Dynamic C, and B# are some of the flavors of C used in embedded programming.

5.2.2.1 nesC
nesC [5] is a dialect of C that has been used predominantly in sensor-nodes programming. It was
designed to implement TinyOS [6], an operating system for sensor networks. It is also used to de-
velop embedded applications and libraries. In nesC, an application is a combination of scheduler
and components wired together by specialized mapping constructs. nesC extends C through a set
of new keywords. To improve reliability and optimization, nesC programs are subject to whole-
program analysis and optimization at compile time. nesC prohibits many features that hinder
static analysis, such as function pointers and dynamic memory allocation. Since nesC programs
will not have indirections, call-graph is known fully at compile time, aiding in optimized code
generation.

5.2.2.2 Keil C
Keil C [7] is a widely used programming language for embedded devices. It has added some key
features to ANSI C to make it more suitable for embedded device programming. To optimize storage
requirements, three types of memory models are available for programmers: small, compact, and large.
New keywords such as alien, interrupt, bit, data, xdata, reentrant, and so forth, are added
to the traditional C keyword set. Keil C supports two types of pointers:

• generic pointers: can access any variable regardless of its location
• memory-specific pointers: can access variables stored in data memory

The memory-specific-pointers-based code execute faster than the equivalent code using generic
pointers. This is due to the fact that the compilers can optimize the memory access, since the memory
area accessed by pointers is known at compile time.

5.2.2.3 Dynamic C
Some key features in Dynamic C [8] are function chaining and cooperative multitasking. Segments of
code can be distributed in one or more functions through function chaining. Whenever a function chain
executes, all the segments belonging to that particular chain execute. Function chains can be used to
perform data initialization, data recovery, and other kinds of special tasks as desired by the program-
mer. The language provides two directives #makechain, #funcchain and a keyword segchain to man-
age and define function chains.

#makechain chain_name: creates a function chain by the given name.
#funcchain chain_name func_name[chain_name]: Adds a function or another function chain to

a function chain.
segchain chain_name {statements}: This is used for function-chain definitions. The program

segment enclosed within curly brackets will be attached to the named function chain.
The language stipulates segchain definitions to appear immediately after data declarations and

before executable statements, as shown in the following code snippet.

82 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

Calling a function chain inside a program is similar to calling a void function that has no parameters.

The order of execution of statements inside a function chain is not guaranteed. Dynamic C’s
costate statement provides support for cooperative multitasking. It provides multiple threads of con-
trol, through independent program counters that can be switched in between explicitly. The following
code snippet is an example.

The yield statement immediately passes control to another costate segment. If the control re-
turns to the first costate segment, then the execution resumes from the statement following the yield

835.2 BACKGROUND

statement. Dynamic C also has keywords shared and protected, which support data that are shared
between different contexts and are stored in battery-backed memory, respectively.

5.2.2.4 B#
B# [9] is a multithreaded programming language designed for constrained systems. Although C in-
spires it, its features are derived from a host of languages such as Java, C++, and C#. It supports object-
oriented programming. The idea of boxing/unboxing conversions is from C#. For example, a float value
can be converted to an object and back to float, as shown in the following code snippet.

The field property is also similar to C#. B# provides support for multithreading and synchronization
through lock and start statements, which are similar to when and cobegin, from Edison. lock pro-
vides mutual exclusion and synchronization support, whereas start is used to initiate threads. Other
important features are device-addressing registers and explicit support for interrupt handlers. These
features are directly supported by the underlying Embedded Virtual Machine (EVM), which interprets
and executes the binary code generated by the B# assembler on a stack-based machine. The B# EVM
runs on a target architecture, thereby hiding the hardware nuances from the programmer. Presence of
EVM promotes reusability of components. Also, since the EVM is based on the stack-machine model,
the code size is much reduced. The EVM also has a small kernel for managing threads.

All of the previously described languages have been optimized for resource-constrained devices.
While designing embedded programs, a measured choice on the flavor of C is quite an important deci-
sion from the viewpoint of an IoT programmer. An IoT programmer may not restrict himself or herself
to a C-flavored language. Many other languages, such as C++, Java, and JavaScript have been stripped
down to run on embedded devices.

5.2.3 MESSAGE PASSING IN DEVICES
In this section, we review some of the communication paradigms and technologies such as RPC, REST,
and CoAP that can be used in resource-constrained environments.

5.2.3.1 RPC
RPC [10] is an abstraction for procedural calls across languages, platforms, and protection mecha-
nisms. For IoT, RPC can support communication between devices as it implements the request/re-
sponse communication pattern. Typical RPC calls exhibit synchronistic behavior. When RPC messages
are transported over the network, all the parameters are serialized into a sequence of bytes. Since
serialization of primitive data types is a simple concatenation of individual bytes, the serialization of
complex data structures and objects is often tightly coupled to platforms and programming languages
[11]. This strongly hinders the applicability of RPCs in IoT due to interoperability concerns.

84 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

Lightweight Remote Procedure Call (LRPC) [12] was designed for optimized communication be-
tween protection domains in the same machine, but not across machines. Embedded RPC (ERPC) in
Marionette [13] uses a fat client such as a PC and thin servers such as nodes architecture. This allows
resource-rich clients to directly call functions on applications in embedded devices. It provides poke
and peek commands that can be used on any variables in a node’s heap. S-RPC [11] is another light-
weight remote procedure-call for heterogeneous WSN networks. S-RPC tries to minimize the resource
requirements for encoding/decoding and data buffering. A trade-off is achieved based on the data types
supported and their resource consumption. Also, a new data representation scheme is defined which
minimizes the overhead on packets. A lightweight RPC has been incorporated into the TinyOS, nesC
[14] environment. This approach promises ease of use, lightweight implementation, local call-seman-
tics, and adaptability.

5.2.3.2 REST
Roy Fielding in his PhD thesis [15] proposed the idea of RESTful interaction for the Web. The main
aim of the REST was to simplify the web-application development and interaction. It leverages on the
tools available on the Internet and stipulates the following constraints on application development:

• Should be based on client-server architecture and the servers should be stateless
• Support should be provided for caching at the client side
• The interface to servers should be generic and standardized (URI)
• Layering in the application architecture should be supported and each of the layers shall be

independent
• Optional code-on demand should be extended to clients having the capability

These constraints, combined with the following principles, define the RESTful approach to applica-
tion development.

• Everything on the Internet is a resource
• Unique identifiers are available to identify the resources
• Generic and simple interfaces are available to work with those resources
• Communication between client and servers can be through representation of resources
• Resource representation through sequence of bytes is followed by some metadata explaining the

organization of the data
• Since transactions are stateless, all interactions should be context-free
• Layering is supported, and hence intermediaries should be transparent

The authors in [16] have highlighted that the previous constraints and principles bring in many
advantages to the distributed applications: scalability, loose coupling, better security, simple address-
ability, connectedness, and performance. Further, they compare RPC with REST for the same qualita-
tive measures, and argue that RESTful approaches are always better for each of the previous measures.
One more advantage of RESTful components is that they can be composed to produce mashups, giving
rise to new components which are also RESTful. In [17] the author identifies essential characteristic
features of a composing language that can compose RESTful components together:

• Support for dynamic and late binding
• Uniform interface support for composed resource manipulation
• Support for dynamic typing

855.2 BACKGROUND

• Support for content-type negotiation
• Support for state inspection of compositions by the client

Although the uniform interface constraint promotes scalability by shifting the variability from in-
terface to resource representation, it also narrows the focus of RESTful approaches to data and its
representation. Also, in the Internet, the exchanges need not be limited to data and its representation;
there can be more than just the pure data. For these cases, the optional code-on demand constraint for
clients has been found to be inadequate for exchanges other than content. Also, the RESTful approach
poses a challenge for those applications that require stateful interactions.

CREST (Computational REST) [18] tries to address these problems. Here, the focus is on ex-
changes of computation rather than on data exchange. Instead of client-server nomenclature, every-
one is addressed as peers; some may be strong and some may be weak, based upon the available
computing power. Functional languages such as Scheme allow computations to be suspended at a
point and encapsulated as a single entity to be resumed at a later point in time, through “continu-
ation.” CREST’s focus is on these sorts of computation. It supports the model of “computations
stopping at a point in a node, exchanged with another node, resumed from the suspended point at
the new node.” As said earlier, both the nodes are peers. CREST has some principles along the lines
of REST [19]:

• All computations are resources and are uniquely identified
• Representation of resources through expressions and metadata
• All computations are context-free
• Support for layering and transparent intermediaries
• All the computations should be included inside HTTP
• Computations can produce different results at different times
• Between calls they can maintain states that may aid computations such as aggregation
• Between different calls, computations should support independence
• Parallel synchronous invocations should not corrupt data

Computations on a peer or on different peers can be composed to create mashups. Peers can share
the load of computations to promote scaling and latency-sensitive applications.

5.2.3.3 CoAP
Since HTTP/TCP stack is known to be resource demanding on constrained devices, protocols such as
Embedded Binary HTTP (EBHTTP) and Compressed HTTP Over PAN (CHoPAN) have been pro-
posed. However, the issue of reliable communications still remains a concern. The IETF work group,
Constrained RESTful Environments (CoRE), has developed a new web-transfer protocol called Con-
strained Application Protocol (CoAP), which is optimized for constrained power and processing ca-
pabilities of IoT. Although the protocol is still under standardization, various implementations are in
use. CoAP in simpler terms is a two-layered protocol: a messages layer, interacting with the UDP, and
another layer for request/response interactions using methods and response code, as done in HTTP. In
contrast to HTTP, CoAP exchanges messages asynchronously and uses UDP.

The CoAP has four types of messages: Acknowledgement, Reset, Confirmable (CON), and Non-
Confirmable (NON). The non-confirmable messages are used to allow sending requests that may not
require reliability. Reliability is provided by the message layer and will be activated when Confirmable
messages are used. The Request methods are: GET, POST, PUT, and DELETE of HTTP. CoAP has

86 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

been implemented on Contiki [20], which is an operating system for sensor networks and in TinyOS
as Tiny-CoAP [21].

Many approaches have been used to evaluate the performance of CoAP. A Total Cost of Ownership
(TCO) model for applications in a constrained environment has been used to compare HTTP versus
CoAP [22]. The major observations from the comparison are as follows:

• CoAP is more efficient for applications on smart objects, engaged in frequent communication
sessions

• CoAP is cost-effective whenever the battery/power-source replacements prove costly
• Whenever the charges for the data communication are volume-based, CoAP is found to be more

cost-effective
• CoAP has been found to be more beneficial cost-wise in push mode than in pull mode

Fig. 5.1 illustrates the CoAP layers and the integration of constrained devices using CoAP with the
Internet through a proxy.

For IoT/CoT, the advantages of CoAP can be summarized as follows.

• A compact binary header (10–20 bytes), along with UDP, reduces the communication overhead,
thereby reducing the delay and minimizing the power consumption due to data transmission.

• Since asynchronous data push is supported, it enables things to send information only when there
is a change of observed state. This allows the things to sleep most of the time and conserve power.

• The minimal subset of REST requests supported by CoAP allows the protocol implementations to
be less complex when compared to HTTP. This lowers the hardware requirements for the smart-
things on which it executes.

FIGURE 5.1 CoAP Layers and Integration of Constrained Devices With the Internet

875.2 BACKGROUND

• The M2M resource discovery is supported by CoAP to find a matching resource based on the
CoRE link format.

• The draft CoAP proposal includes support for alternative non-IP messaging, such as Short
Message Service (SMS) and transportation of CoAP messages over Bluetooth, ZigBee, Z-Wave,
and so forth.

MQ Telemetry Transport (MQTT) protocol is another communication protocol designed for M2M
communication, based on TCP/IP. Both CoAP and MQTT are expected to be widely used in IoT com-
munication infrastructure in the future.

5.2.4 COORDINATION LANGUAGES
Carriero and Gelernter argue in [23] that a complete programming model can be built by combining
two orthogonal models—a computation model and a coordination model. The computation model pro-
vides the computational infrastructure and programmers can build computational activity using them,
whereas the coordination model provides the support for binding all those computational activities to-
gether. They argue that a computational model supported by languages such as C, by themselves cannot
provide genuine coordination support among various computing activities. This observation is more
relevant in IoT–Cloud programming, wherein there are numerous distributed activities which have to
be coordinated in a reliable and fault-tolerant manner.

Coordination can be seen through two different perspectives: (1) based on centralized control,
named as Orchestration and (2) based on distributed transparent control, named as Choreography.
The W3C’s Web services choreography working group defines Choreography as “the definition of the
sequences and conditions under which multiple cooperating independent agents exchange messages in
order to perform a task to achieve a goal state.” Orchestration is seen as “the definition of sequence and
conditions in which one single agent invokes other agents in order to realize some useful function.”
There are many languages that provide Choreography and Orchestration support. We briefly review
some of the features in coordination languages such as Linda, eLinda, Orc, and Jolie.

5.2.4.1 Linda and eLinda
Linda is a coordination-programming model for writing parallel and distributed applications. It takes
the responsibility of enforcing communication and coordination, while general-purpose languages
such as C, C++, and Java are used for computational requirements of the application. The Linda model
supports a shared-memory store called tuple space for communication between processes of the ap-
plication. Tuple spaces can be accessed by simple operations such as “out” and “in.” These operations
can be either blocking or nonblocking. CppLINDA is a C++ implementation of the Linda coordination
model.

The eLinda [24] model extends Linda. It adds a new output operation “wr” that can be used with
the “rd” input operation to support broadcast communication. In Linda, if a minimum value of a da-
taset stored in a tuple space is required, all matching field values should be read, the reduction should
be performed, and then the remaining data should be returned to the tuple space. While this procedure
is accessing the tuple space to extract the minimum value, the tuple space is not accessible to other
processes, which restricts the degree of parallelism by a large amount. eLinda proposes the “Program-
mable Matching Engine” (PME) to solve problems such as the previous one. The PME allows the
programmer to specify a custom matcher that can be used internally to retrieve tuples from the shared

88 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

store. The PME has been found to be advantageous for parsing graphical languages and video-on-
demand systems.

5.2.4.2 Orc
Orc [25] is a coordination language for distributed and concurrent programming. It is based on process
calculus. It provides uniform access to computational services, including distributed communication
and data manipulation. A brief overview of the language features is as follows.

• The basic unit of computation in Orc is called a site, similar to a function or a procedure in other
languages. The sites can be remote and unreliable.

• Sites can be called in the form of C(p); C is a site name and p is the list of parameters. The
execution of a site-call invokes the service associated with the site. The call publishes the response
if the site responds.

• Orc has the following combinator-operators to support various compositions and work-flow
patterns [26]:
• Parallel combinator “|” is used for parallel, independent invocation. For example, in I | J,

expressions I and J are initiated at the same time independently. The sites called by I and J are
the ones called by I | J, and any value published by either I or J is published by I | J. There is
no direct interaction or communication between these two computations.

• Sequential combinator “»” is used for invocations of sites in a sequential manner. In I>y>J,
expression I is evaluated. Each value published by I initiates a separate and new execution of
J. Now, the execution of I continues in parallel with the executions of J. If I does not publish
even a single value, then there is no execution of J.

• Pruning combinator “«” is a special type of combinator which can be seen as an asynchronous
parallel combinator. For example, in I<y<J, both I and J execute in parallel. Execution of
parts of I which do not depend on y can proceed, but site-calls in I for which y is a parameter
are suspended until y has a value. If J publishes a value which can be assigned to y, then J’s
execution is terminated and the suspended parts of I can then proceed.

 The “»” combinator has the highest precedence, followed by “|” and “«.”
• Orc provides several fundamental sites, such as Rwait(t), Prompt(), and so forth, to promote

writing efficient programs.
• Orc allows users to define local functions. Function-calls act and look a lot like site-calls, with a

few exceptions:
• A site call will block if some of its arguments are not available, but a function call does not.
• A site call can publish at most one value, but a function call can publish more than one value.

 Orc also supports functions and sites as arguments to a function call.
• The recent Orc implementation is allowing Java classes to be used as sites.

5.2.4.3 Jolie
Jolie (Java Orchestration Language Interpreter Engine) [27] is an orchestration language for services
in Java-based environments. The statement composers and dynamic fault handling are two important
features in this language. In dynamic fault handling [28], instead of fault handlers being statically
programmed, they are installed dynamically at the execution time. This facilitates fine-tuning of
fault handlers and termination handlers, depending upon which part of the code has already been
executed.

895.2 BACKGROUND

In Jolie there are basically three statement composers: sequence, parallel, and input choice. State-
ments can be composed sequentially, using “;” operator. It means that the statement to the left of the
sequence operator is executed first, and then the statement to the right of it. The syntax of the sequence
statement is as follows.

statementx gets executed first and then the statementy. The “|” operator is used to compose state-
ments in parallel. The statements to the left and right of the parallel operator are executed concurrently.
The syntax is as follows.

statementx and statementy are executed concurrently. The third composer is for guarded input.
Here, message receiving is supported for any of the input statements that are listed. When a message
for an input statement is received, all the other branches are deactivated and the corresponding branch
behavior is executed. The syntax is as shown in the listing.

If the message is received on the input statement IS_2, then branch_code_1 and branch_code_3
are disabled, and execution continues through branch_code_2. Since IoT is characterized by distrib-
uted execution, we believe explicit coordination- language support with at least minimal features for
coordination and composition, for different work-flow patterns is a must for any IoT programming
framework.

5.2.5 POLYGLOT PROGRAMMING
Polyglot programming is also called multilingual programming. It is an art of developing simpler solu-
tions by combining the best possible solutions using different programming languages and paradigms.
This is based on the observation that there is no single programming paradigm or a programming
language which can suit all the facets of modern-day programming or software requirements. It is
also called poly-paradigm programming (PPP), to appreciate the fact that many modern-day software
combines a subset of imperative, functional, logical, object-oriented, concurrent, parallel, and reactive
programming paradigms.

One of the oldest examples of polyglot programming is Emacs, which is a combination of parts
written in both C and eLisp (dialect of Lisp). Web applications are generally based on three-tier ar-
chitecture to promote loose coupling and modularity, and they are also a representation of polyglot
software systems. Polyglot programming [29] has been observed to have increased programmer pro-
ductivity and software maintainability in web development.

Although the word “Polyglot” has been used in software development since 2002, the definition
of Polyglot programming is not standardized yet. Many different definitions by polyglot practitioners

90 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

have been documented in Harmanen [30] and Fjeldberg [29]. One of the definitions says “program-
ming in more than one language within the same context.” Another one says “using multiple program-
ming languages on the same managed run-time.” Fjeldberg extends the definition, taking into account
the developers’ perspective, as: “programming in more than one language within the same context,
where the context is either within one team, or several teams where the integration between the result-
ing applications require knowledge of the languages involved.”

In a Polyglot programming environment, the platform used for the integration, and the different
programming languages supported by the given platform are the two essential aspects. An Inverse
pyramid [29,30] can be used to categorize the programming languages in a polyglot software system.
The Inverse pyramid has three layers: stable, dynamic, and domain, as shown in Fig. 5.2.

Statically typed programming-languages such as Java and C that provide well-tested and stable
functionality settle toward the stable layer. The less powerful general-purpose technologies, such as
HTML and CSS, which are tightly coupled to a specific part of the application, bubble up to the top
layer, and the dynamic layer in the middle consists of a variety of programming languages such as
Groovy and Clojure, which are more flexible and aid rapid functionality development. The inverse
pyramid signifies the fact that it is the single stable language, which supports all of the previously de-
scribed layers and various languages in a bedrock fashion.

Since IoT is characterized by heterogeneity in various forms, a single programming language
or a single programming model may not be able to provide complete support for the application
development in IoT. As we have already argued, at least a coordination language and a computa-
tional language is required in a unified programming model for IoT, which, in a way, is polyglot
programming.

FIGURE 5.2 Inverse Pyramid for Polyglot Programming

915.3 SURVEY OF IoT PROGRAMMING FRAMEWORKS

5.3 SURVEY OF IoT PROGRAMMING FRAMEWORKS
5.3.1 OVERVIEW
In this section, we present a summary of different programming frameworks for IoT and cloud that
have been developed. These programming frameworks promote design reuse, implementation reuse,
and validation reuse, thereby enhancing software extensibility, flexibility, and portability. The complex-
ity of the domain and maturity of the problem are the biggest challenges in developing frameworks
[31]. Since IoT domain itself is in its initial stages, many frameworks are also in the development and
experimental stages. We propose the following set of minimal features to be fulfilled by the program-
ming frameworks for IoT:

• Coordination: An IoT can have computing elements playing different roles: controllers, storage
managers, and application processors. We need programming-language support for orchestrating
their activities. The orchestration can be explicit (control driven) or implicit (data driven).

• Heterogeneity: The IoT brings disparate computing devices together for the purposes of running
smart-computing applications. The programming framework should be capable of efficiently
exploiting the system heterogeneity by allowing the developer to provide guidance on how the
computations must be mapped to the computing elements.

• Scalability: For IoT to become a success, it is not sufficient to just interconnect massive numbers
of devices. They should be programmed to run many creative applications, such that massive
numbers of users would benefit from their deployment. Therefore, IoT needs programming
frameworks that support a variety of programming patterns, and should also be able to perform
load-balancing dynamically.

• Fault tolerance: In IoT, we can expect frequent system partitioning due to the mobility of computing
elements. The programming framework should allow developers to create applications that can
gracefully go between online and offline states as networks partition and heal their connections.

• Lightweight footprint: The programming framework should be lightweight both in terms of the
runtime overhead and the programming effort needed by the developers.

• Support for latency-sensitive applications: IoT will have many applications which would be
geographically distributed and hence may be latency-sensitive. Pushing all the computations
to Cloud will not help these sorts of applications. The programming framework, including the
runtime, has to support these sorts of requirements dynamically.

5.3.2 IoT PROGRAMMING APPROACHES
The following four approaches are used predominantly in IoT application development [32].

1. Node-Centric Programming: Here, every aspect of application development, communication
between nodes, collection and analysis of sensor data, and issuing of commands to actuator nodes
has to be programmed by the application developer. Although it has greater control over the way
that programs work, it is too labor-intensive and does not promote portability.

2. Database approach: In this model, every node is considered to be a part of a virtual database.
Queries as part of an application can be issued on sensor nodes by the developer. This model
does not support application logic at this level, rendering it to be of little use in IoT application
development.

92 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

3. Macro Programming: In this methodology, application logic can be specified and also
abstractions are provided to specify high-level communication, thereby hiding low-level details
from developers, which will aid in modular and rapid development of applications.

4. Model-Driven Development: This takes note of both vertical and horizontal separation of
concerns. Vertical separation increases the level of abstraction, thereby reducing application-
development complexity. Horizontal separation of concern reduces development complexity by
describing the system, using different system views. Each perspective elaborates on a certain
aspect of the system.

Many of the IoT development kits, which are available in the market, support one of the previously
listed approaches. This categorization is not exhaustive, as new hybrid approaches may evolve as the
IoT domain itself matures.

5.3.3 EXISTING IoT FRAMEWORKS
The IoT research communities from many academic and research organizations are constantly striv-
ing to simplify the efforts involved in IoT application development by developing new programming
frameworks. We present a few of them and highlight their key features.

5.3.3.1 Mobile Fog
Cisco has proposed a new computing model called Fog computing [33]. Here, generic application logic
is executed on resources throughout the network, including routers and dedicated computing nodes. In
contrast to the pure Cloud paradigm, fog-computing resources perform low-latency processing near the
edge, while latency-tolerant, large-scope aggregations are performed on powerful resources in the core
of the network (Cloud).

Mobile fog [34] extends fog computing by providing a Platform as a Service (PaaS) programming
model for IoT application development to simplify the task of application development that runs on
heterogeneous devices distributed over a wide area, and also to provide support for dynamic scaling
based on their workload.

Here, an application will contain processes distributed throughout the fog-computing infrastruc-
ture, on Cloud and on edge devices, based on geographical proximity and hierarchy. Each process can
perform tasks with respect to its location and level in the network hierarchy, such as sensing, actuation,
and aggregation. A process running on a device which is at the edge is a leaf node, whereas a process
in the Cloud is the root node in a given hierarchy. Processes on nodes between devices and Cloud are
intermediate nodes (routers, servers, etc.). Each process handles a workload from a certain geospatial
region.

Mobile Fog provides API support through its runtime. Mobile Fog uses computing- instance re-
quirements to provide dynamic scaling. It is based on user-provided policy, such as CPU utilization
rate, bandwidth, and so forth.

5.3.3.2 ELIoT (Erlang Language for IoT)
Although the language Erlang was originally designed for embedded platforms, over a period of time it
amassed a complex infrastructure, which is usually not required in devices and is a burden on resource-
constrained things. ELIoT [35], Erlang language for IoT, tries to address this for IoT application de-
velopment.

935.3 SURVEY OF IoT PROGRAMMING FRAMEWORKS

ELIoT provides a small library for developing decentralized sensing/actuation systems, an inter-
preter suited for resource-constrained IoT devices, and a simulator for testing the implementations in a
fully or partially simulated environment. The ELIoT’s virtual machine is a stripped-down, lightweight
version of Erlang’s virtual machine. Heavy libraries, which are not required for IoT, are removed (such
as CORBA middleware systems). It includes a custom-networking stack for improving efficiency and
for supporting new communication primitives. Instead of TCP, UDP is used for both reliable and non-
reliable communication. A customized reliability layer is built on UDP.

Generally for IoT applications, strict layering of the networking stack may not be fully advanta-
geous; some form of cross-layering is found to be helpful for IoT applications [19]. Erlang’s network
driver fills the incoming-message queue of the receiver with the payload of the message, hiding all
of the other details, whereas the network driver of the ELIoT exposes additional information such as
the IP address of the source node and the Received Signal Strength Indicator (RSSI) coming from the
radio, which are treated as any other type of data.

The Erlang’s uni-cast interprocess communication operator “!” is built on a complete TCP/IP stack,
ensuring reliable communication for both local and remote communication. Since, TCP/IP stack comes
with a cost and can be resource-draining on devices, in ELIoT, the ! operator is used only for commu-
nication between local processes. Remote communications in ELIoT are handled by a set of specific
functions from the ELIoT library, whose semantics are its best effort, and is limited to SingleHop in
wireless networks. Furthermore, the ELIoT library supports a rich set of communication patterns, in-
cluding the broadcast mode.

ELIoT provides a simulator for supporting IoT application debugging and testing. The simulator
can model a complete system through virtual nodes running unmodified ELIoT code. Also, it can run a
mixed deployment where virtual nodes seamlessly interact with physical devices. The ELIoT simula-
tor allows for debugging a system in a fully simulated deployment environment, which can seamlessly
move into an actual deployment environment. The ELIoT framework provides wrappers on nodes,
which are basically RESTful interfaces, through which nodes can be accessed by users through the
normal HTTP operation.

ELIoT brings in the advantages of Erlang to IoT in a lightweight framework.

5.3.3.3 Compose API
Compose API [36] is an IoT service-provider platform through RESTful APIs, wherein things, users,
and the Compose platform can interact with each other to provide services based on IoT, called Inter-
net of Services (IoS). Compose platform is based on Web of Things (WoT): all of the physical objects
connected to the platform are web-enabled and can interact among themselves using the web protocols.
Along with the APIs, the compose platform consists of GUI, semantic registry, cloud runtime, and
communication libraries.

Any object which implements the communication protocols of the Compose API is web- enabled
and is called a Web Object (WO). Each WO holds a virtual identity inside the Compose platform, called
the Service Object (SO). The SOs communicate with the external WOs through APIs. SOs can act as
data endpoints or they can also act as intermediaries, feeding processed data to other SOs. Every time
a sensor attached to WOs produces a new reading, it is forwarded as a Sensor Update (SU) on a stream
to the Compose platform, to be collected by the corresponding SO for processing based on some pro-
cessing logic. The processing logic is a combination of logical, string, and arithmetic operations imple-
mented in the form of a processing pipeline. An SU goes through a number of stages in the pipeline in

94 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

order to transform into a new output or a new SU. Connections between SOs are built through subscrip-
tions, and communication between them is through events. A JSON document description deploys each
SO in the platform.

Compose API simplifies node-centric programming and exposes nodes through RESTful APIs
which can be further composed. Such a programming methodology is quite advantageous to IoT.

5.3.3.4 Distributed Dataflow Support for IoT
In this approach [37], existing IoT dataflow platforms such as WOTkit processor and Node-RED are
extended to support distributed dataflow, which is one of the important characteristic features of IoT.
Dataflow programs are generally called flows, which consist of nodes connected by “wires.” The data-
flows are generated using JSON documents. During execution, nodes get instantiated in the memory,
and the code is executed as and when the node receives data on the incoming “wire.”

The nodes do not share states with each other and are inherently independent and can execute code
in parallel. This facilitates computation migration between heavy processors and devices seamlessly.
Based on user choices and trade-offs, computations can be split and distributed, so that a part of them
can execute in the cloud while the other parts can execute on edge devices. According to the authors,
the present-day IoT dataflow platforms need to be extended to support distributed dataflow, for which
three things are necessary: flow ownership, naming of nodes, and classification of connections (wires)
as local or remote. This framework aims to incorporate these three attributes to WOTkit and Node-
RED to aid in IoT application development from the dataflow perspective.

5.3.3.5 PyoT
PyoT [38] is a programming framework for WSNs, which have the capability to communicate with each
other through the Internet, using 6LoWPAN and CoAP. PyoT abstracts WSNs as software objects, which
can be manipulated and composed to perform complex tasks. PyoT uses CoAP’s RESTful interface to
interact with nodes. Applications can consider sensing and actuating capabilities of nodes, shared with
the external world through URIs. The users can discover available resources, monitor sensors and actua-
tors, store data, define events and actions, and program to interact with resources using Python. PyoT
supports “in-network processing,” in which a part of the application logic can be directly run on devices.

PyoT has five components: (1) Virtual Control Room, (2) Shell, (3) Storage Element, (4) Message
Queue, and (5) one or more PyoT Worker Nodes. The Web user interface is the virtual control room that
allows execution of basic operations, such as listing of resources, sensor monitoring, and data storage.
The Shell allows macro programming for defining complex operations through a set of Python APIs for
interacting with resources, which are abstracted as Python objects. The Storage Element maintains the
system status. Each PyoT Worker Node generally manages an IoT-based WSN, by providing a set of
processes that perform generic tasks and support communication activities with other nodes. The PyoT
Worker Node also keeps track of nodes and their resources, provides updates to the Storage Element,
performs sensor-data collection, and also supports event detection. The macro programming support by
this framework will lessen the burden on IoT programmers.

5.3.3.6 Dripcast
Dripcast [39] is a Java-based application-development framework to integrate smart devices into the
cloud-computing infrastructure. Further, it is a serverless framework for storing and processing Java
objects in a cloud environment. These Java objects will be made available on smart things, and users

955.3 SURVEY OF IoT PROGRAMMING FRAMEWORKS

can manipulate those objects as if they were local objects. It implements transparent Java remote proce-
dure-calls and a mechanism to read, store, and process Java objects in a distributed, scalable data-store.
Under Dripcast, all Java objects have a worldwide unique ID. The Dripcast framework consists of four
components: Client, Relay, Engine, and Store.

1. Client is a Java library, which works on devices such as smartphones and tablets. It monitors the
Java object on the client devices, and forwards remote procedure- calls, which are abstracted from
the users to the Relay.

2. Relay is a stateless distribution-gateway. It forwards requests from clients to corresponding engine
servers. A relay server knows the association of the object’s unique ID and engine servers; a
Distributed Hash Table (DHT) manages this association.

3. Engine is a set of engine servers. Each engine server runs JavaVM and executes Java methods
of an object for a remote procedure-call request forwarded by the relay, and returns the result
back to the relay. If there is a state change of the object, then the new state is stored back into the
Store.

4. Store is a scalable distributed data-store for storing Java objects with the capability for replication
and automatic recovery.

The Dripcast framework enables Java-based IoT application development.

5.3.3.7 Calvin
It is a framework [40] that merges IoT and cloud in a unified programming model. It combines the
ideas of actor-model and flow-based computing. To simplify application development, it proposes four
phases to be followed in a sequential fashion: Describe, Connect, Deploy, and Manage.

1. Describe: In this phase, the functional parts of the applications, which are reusable components,
are described. In Calvin, everything is treated as an actor: devices, services, and even a piece of
computation on cloud. These actors can communicate with each other through ports. To create an
actor, a developer describes the actions, their input/output relations, the conditions for a particular
action to be triggered, and also the priority between actions. Device manufacturers can supply
actors that correspond to their devices as part of the support code shipped with their devices, thus
enabling their devices to easily integrate with a Calvin application.

2. Connect: Once the actors have been described, the next step is to connect those actors by directed
graphs between the ports of a number of actors.

3. Deploy: In this phase, an application is instantiated according to the graphs provided with its
description. The description/connect phase does not specify where the various actors should
execute, nor how the data should be transported between them. This is handled during deployment
of the application. The distributed runtime present at the nodes where the application gets
deployed shoulders this responsibility. By forming a mesh network of runtime on nodes, actors
in a running application can migrate from one runtime to another. Once the runtime has been
instantiated and connected to the actors locally, the distributed execution environment can move
actors to any accessible runtime based on resources, locality, connectivity, and performance
requirements.

4. Manage: In this phase, the distributed execution environment monitors the applications, handling
migration of actors, updates, error recovery and scaling, along with book-keeping.

96 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

These phases are supported by the runtime, APIs, and communication protocols. The platform-
dependent part of Calvin runtime manages communication between runtimes, transport layer support,
the inter-runtime communication, and abstraction for I/O, sensing mechanisms to the upper levels of
the runtime. The platform-independent runtime provides interface for the actors. The scheduler of the
Calvin runtime resides in this layer. Calvin runtime supports multitenancy. Once an application is de-
ployed, actors may share runtime with actors from other applications.

5.3.3.8 Simurgh
Simurgh [41] provides a high-level programming framework for IoT application development. The
framework supports the exposing of IoT services as RESTful APIs, and also the composing of those
IoT services to create various flow patterns in a simplified manner. The overall Simurgh architecture
has two main layers: thing layer and Platform layer. In the thing layer there is a software component
called Network Discovery and Registration Broker, which listens to the incoming connection requests
from devices and handles them. There is a rich set of libraries providing device-specific interfaces.
An API mediator assists programmers to expose their applications through RESTful APIs. Also, they
provide RESTful wrappers for those low-level device interfaces which are not supported by native ven-
dors, and, finally, an API manager which monitors API’s access from the external world.

The platform layer has the following components:

1. Thing Description Repository: This stores information about things and services offered by
them, periodically updated by the Network Discovery and Registration Broker and API Mediator
component. Things are described using TDD (Thing Description Document). A TDD file consists
of mainly two parts:
a. Entity Properties: Usually a user-chosen name, last modification date and entity’s location is

stored.
b. Entity Services: For each of the entities described earlier, entity services define APIs that are

available on the entity. These API definition files can be in RESTful API Modeling Language
(RAML) or in Swagger format.

2. Two-Phase Discovery Engine: This is used to discover an entity and its corresponding APIs in
two phase. In the first phase, the engine will search in TDD repository to find entities based on
given criteria. If the goal is finding an API of an entity capable of doing a certain task, then,
another search is performed on their respective API Description Documents.

3. Flow Design: This component assists in designing flows, which are chains of IoT services.
Through this component, users can discover things, discover their APIs, and also can call the
found APIs, thereby generating a flow.

4. Flow Composition: Two or more flows can be combined to build a new flow that can deliver a new
functionality. This component performs those compositions.

5. Flow Execution Engine: This engine provides all the required resources during the execution of a
flow. It configures them and executes all the necessary APIs to fulfill a request.

6. Flow Template Management and Repository: Flows are managed, and, also, to promote flow
reusability, the used patterns are stored and are exposed to users when they are designing new flows.

7. Request Management: This component performs user-request matching to flow templates. If a
match is not found, then the request will be forwarded to the Flow Composition module to match
with composed flow patterns. Furthermore, if a flow is not found, then users can build the required
flow using a flow-design interface.

975.3 SURVEY OF IoT PROGRAMMING FRAMEWORKS

The Simurgh framework provides detailed support for IoT development. Assistance to develop,
manage, and reuse flow patterns as provided in this framework is crucial for IoT programmers.

5.3.3.9 High-Level Application Development for the Internet of Things
The authors [42] propose a detailed framework for developing IoT applications. They propose a new
developmental methodology and a framework to support it. To simplify the process of IoT application
development, this framework stresses identifying stakeholders and demarcating their responsibilities.
They can be domain experts, software designers, application developers, device developers, and net-
work managers.

In this framework, a conceptual model, which serves as a knowledge base for a problem, is built,
taking into account four different areas of concern in IoT application development: domain-specific
concepts, functional-specific concepts, deployment-specific concepts, and platform-specific concepts.

• Domain-Specific Concepts: The concepts in this category are unique to an application domain.
For example, building automation is reasoned in terms of rooms and floors. There can be sensors,
actuators, and storage devices too. These concepts are identified under: Entity of Interest (EoI),
which can be any object (eg, room, book, plant); Resources, such as sensors, actuators, and
storage devices; and the Region used to specify the location of a device.

• Functionality-Specific Concepts: These concepts describe computational elements of an
application and interactions among them. These computational elements are software components
that encapsulate and hide a subset of the system’s functionality and data. Interactions among
software components happen through request/response, publish/subscribe, and command mode.

• Deployment-Specific Concepts: These concepts describe information about devices. A device is an
entity that provides resources the ability to interact with each other. Each device can host zero or
more resources and is located in a region.

• Platform-Specific Concepts: These are computer programs that act as a translator between
hardware devices and an application. They are categorized as Sensor driver, Actuator driver,
Storage Services, and End-user application.

The developmental framework consists of modeling languages and automation techniques to sup-
port stakeholders to implement the conceptual model.

• Support for Domain Concerns: The developmental framework supports domain concerns in
specifying the domain vocabulary using Srijan Vocabulary Language and compiling those
vocabulary specifications. This compiled output supports the later phases.

• Functional Concerns: For this phase the developmental framework supports by specifying
application architecture using Srijan Architecture Language, then compiling the architecture
specification, and finally by implementing the application logic

• Deployment Concerns: The framework specifies the target deployment of devices using the Srijan
Deployment Language, and maps a set of computational services to a set of devices.

• Platform Concerns: Here, the device drivers are implemented, and the linker generates packages
that can be deployed on devices. It basically combines output of all the preceding phases, such as
application logic and device drivers. Device-specific code is generated in this phase.

This framework takes the software-engineering approach to IoT development and supports model-
driven development.

98 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

5.3.3.10 PatRICIA
PatRICIA [1] is a programming framework for IoT application development on Cloud platforms. The
key feature of this framework is the “intent”-based programming model. The programmers can specify
the intent and the scope of the intent. Intents can be either a monitoring task on devices or a controlling
task of devices. The intent scope delimits the range of an intent. It is the responsibility of the framework
to execute the intent on the devices demarcated by the scope of the intent. This programming model
hides many of the underlying complexities of IoT programming from the end users. For example, if
PatRICIA is being used in traffic management, then the end user can simply say “track all the vehicles
exceeding the speed limit 90.” Here, PatRICIA executes the intent: track the vehicles; and the scope of
the intent: all those vehicles, which exceed the speed limit 90 kmph.

The architecture of the framework is four-tiered. The topmost layer is named Development Sup-
port Layer. It contains tools to aid in the application-development lifecycle. It has a module called
Application Manager, whose responsibility is to configure, deploy, and license applications, along
with providing a testing environment for IoT applications. The important part of this layer is that it
exposes the programming model based upon “intent” to developers. The Cloud System Runtime layer
provides support for intent-based programming by executing the intent on the “scope of the intent.”
The Data and Device Integration layer is responsible for data Management, IoT- device manage-
ment, and virtualization. The Device Communication layer implements different connectors catering
to heterogeneous devices. The physical layer has all the things, which can communicate through the
Internet.

Intent-based programming model: This programming model provides tools to work with monitor-
ing and control tasks. Control tasks help developers to operate, provision, and manage low-level com-
ponents. They provide a high-level representation of underlying devices and their functionality. They
are named “ControlIntent.” Likewise, monitoring tasks, named “MonitorIntent,” are used to subscribe
to events from the physical environment, along with obtaining and provisioning devices’ context. These
tasks can be represented by application developers as “intents,” which get automatically instantiated for
the supplied intent scope.

Intent is a data structure representing a specific task, which can be performed in a physical environ-
ment. Based on the specified intent, a suitable task is selected (control or monitor), instantiated, and
executed on the Cloud platform. The Intent thereby gets translated as a sequence of steps to process
data or to perform some actuation on the underlying things. To subscribe to an event in the underlying
physical environment or to perform some IoT control, developers can define and configure intents. This
shields the developers from the inherent complexity of the IoT.

Intent scope is an abstraction of a group of physical entities which have some common properties.
The demarcation of the physical layer for an intent scope is determined on the Cloud. By specifying the
properties that have to be satisfied by physical entities to be in a scope, developers define Intent Scope.
PatRICIA also provides operators such as send, notify, poll, and delimit to work with intents.

The support for intent-based programming in PatRICIA will hide many of the underlying heteroge-
neity, which is advantageous in IoT programming.

5.3.4 SUMMARY
Each of the programming frameworks discussed earlier have their own advantages in IoT development.
We highlight some of their key features in Table 5.1.

9
9

5
.3

 SU
R

VEY O
F IoT P

R
O

G
R

A
M

M
IN

G
 FR

A
M

EW
O

R
K

S

Table 5.1 Highlights of Various IoT Programming Frameworks

Framework Approach Key Features Program’s Target Coordination Support

Mobile Fog Macroprogramming Edge processing, dynamic scaling, cloud
support, Runtime API support.

Devices Coordination support through
special APIs.

ELIoT Macroprogramming Extends Erlang for IoT, Support for
broadcast communication, RESTful
API support, simulator, virtual machine
support.

Devices Coordination support through Erlang
language.

Compose API Macroprogramming RESTful APIs to access things, cloud
support, composing of services through
APIs.

Cloud and devices Coordination support on Cloud.

Distributed Dataflow
support for IoT

Macroprogramming,
with dataflow support

Dataflow-based IoT application
development, edge processing.

Devices Coordination through choreography.

PyoT Macroprogramming Edge processing support for latency-
sensitive applications, Python for
macroprogramming, URIs for nodes,
RESTful APIs.

Devices and web Coordination support through
macroprogramming.

Dripcast Model-driven
development (Java)

Services in terms of Java objects, remote
management of objects, Cloud support.

Devices No explicit coordination support.

Calvin Model-driven
development

Actor model and dataflow- based
development, Cloud support, runtime
multitenancy support for things.

Devices Coordination through choreography.

Simurgh Macroprogramming RESTful API support, flow design and
composition support with reusability.

Devices Orchestration support for flow
patterns.

High-level
application
development for IoT

Model-driven
development (own
languages)

Complete application development,
lifecycle support, division of
responsibilities between stakeholders, new
languages for vocabulary, architecture,
and deployment specification.

Devices Coordination support specified
during identification of functional
concerns.

PatRICIA Model-driven
development

Intent-based programming, cloud support
for control and monitoring of tasks.

Devices and
Cloud

Coordination support on cloud,
specified through scope of the intent.

100 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

5.4 FUTURE RESEARCH DIRECTIONS
It is estimated by Cisco that only 2% of the present devices are Internet-enabled. As more devices
get connected, there arises a need for integrating the services provided by these devices into a big-
ger realm. Programming frameworks should support development of new applications by integrating
these services in a simple manner. We believe this can revolutionize the field of future Internet ap-
plication development. Also, these applications will be geographically distributed over a wide area
spanning some hostile conditions, warranting fault tolerance and edge processing for latency-sensitive
applications. New frameworks should lessen the impact of IoT application-development challenges on
programmers. Also, due to the huge number of devices, the volume of data available will be astronomi-
cal, which can bring in Cloud computing as a back-end support for data management and analytics.
Programming frameworks that can unify IoT and Cloud as a single programming model will be more
advantageous from the developers’ point of view.

In addition, we believe the IoT community should also be investigating the following problems:

1. Complete support for IoT application development lifecycle by programming frameworks.
2. Documentation of IoT programming patterns and antipatterns.
3. Standardization of the IoT application development process, something similar to Capability

Mature Models in traditional software engineering.
4. Lighter versions of popular programming languages such as JavaScript, Python, and Java that

will continue to evolve.
5. Standardization of communication protocols at the application layer for constrained

environments.
6. Standardization of wrappers for integration of legacy programs in the embedded world to the IoT

realm.
7. Polyglot programming, involving languages and standards such as C, C++, Java, Erlang,

Go, Javascript, .NET, WS*, and so forth for IoT, can bring in a greater number of devices,
applications, and users under a single programming platform.

8. Applications such as smart cities, smart roads, and smart classrooms that will trigger
development of novel approaches for IoT application development.

9. Introducing intelligence into devices that can create novel applications that may warrant secure
and reliable programming frameworks for application development on intelligent devices.

10. Lightweight GUI on devices to simplify IoT application usage and attract end users from
nontechnical domains.

5.5 CONCLUSIONS
In this chapter we have reviewed the challenges and some of the essential features for IoT application
development. Message-passing models and embedded language features that are necessary for IoT
have been reviewed. The relevance of coordination languages and polyglot programming in IoT has
been discussed. The section on programming frameworks highlights the programming approaches and
key features in some of the frameworks that have been recently developed for IoT application devel-
opment. There are so many challenges faced by IoT application developers, and, as the domain itself
is new, the standardization of frameworks will require a continuous effort from the IoT community.

101REFERENCES

REFERENCES
 [1] Nastic S, Sehic S, Vogler M, Truong HL, Dustdar S. PatRICIA—a novel programming model for IoT

applications on cloud platforms. In: Proceedings of the IEEE sixth international conference on service-
oriented computing and applications (SOCA). Kauai, Hawai, USA, December 16–18, 2013.

 [2] Botta A, de Donato W, Persico V, Pescapé A. On the integration of cloud computing and Internet of Things.
In: Proceedings of the international conference on future Internet of Things and cloud (FiCloud). Barcelona,
Spain, August 27–29, 2014.

 [3] The top programming languages. IEEE spectrum, http://spectrum.ieee.org/static/interactive-the-top-
programming-languages; 2015.

 [4] Barr M. Programming embedded systems in C and C++. O’Reilly Media, Inc., CA, U.S.A; 1999.
 [5] Gay D, Levis P, Von Behren R, Welsh M, Brewer E, Culler D. The nesC language: a holistic approach to

networked embedded systems. ACM Sigplan Notices 2003;38:1–11.
 [6] Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo A, et al. In: Weber W, Rabaey JM, Aarts E,

editors. Tinyos: an operating system for sensor networks, ambient intelligence. Berlin, Heidelberg: Springer;
2005.

 [7] Cx51 user’s guide: language extensions. http://www.keil.com/support/man/docs/c51/c51_extensions.htm;
2015.

 [8] Jerraya AA, Yoo S, Verkest D, Wehn N. Embedded software for soc. USA: Kluwer Academic Publishers;
2003.

 [9] Programming language for embedded systems. http://www.bsharplanguage.org/; 2015.
 [10] Birrell AD, Nelson BJ. Implementing remote procedure calls. ACM Trans Comput Syst (TOCS) 1984;2(1):

39–59.
[11] Reinhardt A, Mogre PS, Steinmetz R. Lightweight remote procedure calls for wireless sensor and actuator

networks. In: IEEE international conference on pervasive computing and communications workshops
(PERCOM workshops). Seattle, USA, March 21–25, 2011.

 [12] Bershad BN, Anderson TE, Lazowska ED, Levy HM. Lightweight remote procedure call. ACM Trans
Comput Syst (TOCS) 1990;8(1):37–55.

[13] Whitehouse K, Tolle G, Taneja J, Sharp C, Kim S, Jeong J, Hui J, Dutta P, Culler D. Marionette: using
RPC for interactive development and debugging of wireless embedded networks. In: Proceedings of the fifth
international conference on information processing in sensor networks. Nashville, USA, April 19–21, 2006.

[14] May TD, Dunning SH, Dowding GA, Hallstrom JO. An RPC design for wireless sensor networks. Int J
Pervasive Comput Commun 2007;2(4):384–97.

[15] Fielding RT. Architectural styles and the design of network-based software architectures. PhD thesis,
University of California, Irvine; 2000.

[16] Feng X, Shen J, Fan Y. REST: an alternative to RPC for web services architecture. In: Proceedings of the first
international conference on future information networks. Beijing, China, October 14–17, 2009.

[17] Pautasso C. Composing restful services with Jopera. In: Proceedings of the eighth international conference on
software composition. Zurich, Switzerland, July 2–3, 2009.

[18] Erenkrantz JR, Gorlick M, Suryanarayana G, Taylor RN. From representations to computations: the evolution
of web architectures. In: Proceedings of the sixth joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on the foundations of software engineering. Cavtat, Croatia,
September 3–7, 2007.

[19] Sivieri A. ELIoT: a programming framework for the Internet of Things. PhD thesis, Politecnico De Milano,
Italy; 2014.

[20] Kovatsch M, Duquennoy S, Dunkels A. A low-power CoAP for Contiki. In: Proceedings of the IEEE eighth
international conference on mobile ad-hoc and sensor systems (MASS). Valencia, Spain, October 17–21,
2011.

http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0020
http://www.keil.com/support/man/docs/c51/c51_extensions.htm
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0025
http://www.bsharplanguage.org/
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0040

102 CHAPTER 5 PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

[21] Ludovici A, Moreno P, Calveras A. TinyCoAP: a novel constrained application protocol (CoAP)
implementation for embedding RESTful web services in wireless sensor networks based on TinyOS. J Sens
Actu Netw 2013;2(2):288–315.

[22] Levä T, Mazhelis O, Suomi H. Comparing the cost-efficiency of CoAP and HTTP in Web of Things
applications. Decis Support Syst 2014;63:23–38.

[23] Carriero N, Gelernter D. How to write parallel programs. MIT Press; 1990.
[24] Wells G. Coordination languages: back to the future with Linda. In: Proceedings of the second international

workshop on coordination, adaption techniques for software entities (WCAT05). Glasgow, UK, July 25, 2005.
[25] Kitchin D, Quark A, Cook W, Misra J. The Orc programming language. In: Lee D, Lopes A, Poetzch-Heffter

A, editors. Formal techniques for distributed systems. Berlin, Heidelberg: Springer-Verlag; 2009.
[26] Cook WR, Patwardhan S, Misra J. Workflow patterns in Orc. In: Ciancarini P, Wiklicky H, editors.

Coordination models and languages. Berlin, Heidelberg: Springer; 2006.
[27] Montesi F, Guidi C, Lucchi R, Zavattaro G. Jolie: a Java orchestration language interpreter engine. Electron

Notes Theor Comput Sci 2007;181:19–33.
[28] Montesi F, Guidi C, Lanese I, Zavattaro G. Dynamic fault handling mechanisms for service-oriented

applications. In: Proceedings of the sixth European conference on web services. Dublin, Ireland, November
12–14, 2008.

[29] Fjeldberg, H-C. Polyglot programming: a business perspective. Master’s thesis, Norwegian University of
Science and Technology; 2008.

[30] Harmanen J. Polyglot programming in web development. Master’s thesis, Tampere University of Technology;
2013.

[31] Schmidt DC, Gokhale A, Natarajan B. Frameworks: why they are important and how to apply them effectively.
ACM Queue Mag 2004;2(5):66–75.

[32] Jardosh S, Patel P. Application development approaches for the Internet of Things: a survey. In: Proceedings
of the IEEE conferentd: TENSYMP 2015. Ahmedabad, India, May 13–15, 2015.

[33] Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the Internet of Things. In: Proceedings
of the first edition of the MCC workshop on mobile cloud computing. Helsinki, Finland, August 17, 2012.

[34] Hong K, Lillethun D, Ramachandran U, Ottenwälder B, Koldehofe B. Mobile fog: a programming model for
large-scale applications on the Internet of Things. In: Proceedings of the second ACM SIGCOMM workshop
on mobile cloud computing. Hong Kong, August 12, 2013.

[35] Sivieri A, Mottola L, Cugola G. Drop the phone and talk to the physical world: programming the Internet of
Things with Erlang. In: Proceedings of the third international workshop on software engineering for sensor
network applications. Zurich, Switzerland, June 2, 2012.

[36] Pérez JL, Villalba A, Carrera D, Larizgoitia I, Trifa V. The COMPOSE API for the Internet of Things. In:
Proceedings of the companion publication of the twenty-third international conference on World Wide Web.
Seoul, Korea, April 7–11, 2014.

[37] Blackstock M, Lea R. Towards a distributed data flow platform for the Web of Things. In: Proceedings of the
fifth international workshop on Web of Things. Cambridge, USA, October 8, 2014.

[38] Azzara A, Alessandrelli D, Bocchino S, Petracca M, Pagano P. PyoT: a macroprogramming framework for
the Internet of Things. In: Proceedings of the ninth IEEE international symposium on industrial embedded
systems (SIES). Pisa, Italy, June 18–20, 2014.

[39] Nakagawa I, Hiji M, Esaki H. Dripcast-architecture and implementation of server-less Java programming
framework for billions of IoT devices. J Infor Process 2014;23(4):458–64.

[40] Persson P, Angelsmark O. Calvin—merging cloud and IoT. Proc Comput Sci 2015;52:210–7.
[41] Khodadadi F, Dastjerdi AV, Buyya R. Simurgh: a framework for effective discovery, programming, and

integration of services exposed in IoT. In: Proceedings of the international conference on recent advances in
Internet of Things (RIoT). Singapore, April 7–9, 2015.

[42] Patel P, Cassou D. Enabling high-level application development for the Internet of Things. J Syst Softw
2015;103:62–84.

http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00005-8/ref0090

103

CHAPTER

VIRTUALIZATION ON
EMBEDDED BOARDS AS
ENABLING TECHNOLOGY
FOR THE CLOUD OF THINGS

B. Bardhi*, A. Claudi**, L. Spalazzi*, G. Taccari†, L. Taccari*
*Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy;

**ADB Broadband S.p.A., Viale Sarca, Milano, Italy; †Par-Tec S.p.A., Milano, Italy

6.1 INTRODUCTION
Nowadays, the interlinked networks of sensors, actuators, and processing devices are creating a vast
net of connected computing resources, things, and humans. NIST and NICT, in their joint report about
cyber-physical cloud computing [1], refer to this scenario as Smart Networked Systems and Societies
(SNSS) and propose several application domains; healthcare, disaster management, power-grid and
energy saving, and automotive and transportation systems are some of them. In analyzing the require-
ments of such application domains, it turns out that an SNSS should be based on the following core
technologies:

1. networking services,
2. real-time systems,
3. wireless sensor/actuator networks,
4. social networks, and
5. computing services.

Internet of Things (IoT) and cloud computing have seen an independent evolution, and each of them
has been conceived to cover a part of the aforementioned technologies, namely: IoT covers points 1, 2,
and 3, whereas cloud computing covers 1, 4, and 5 [2]. As a consequence, the integration of IoT and
cloud computing, called Cloud of Things (CoT), can be considered as a first step toward the SNSS vision
[1,3]. Indeed, the benefits that IoT and cloud computing receive from their integration are the following:

• Pervasivity and ubiquity: Pervasivity, that is, when things are placed everywhere, is typical of
IoT; whereas ubiquity, that is, when resources are usable from everywhere, is typical of cloud
computing.

• Efficient use of resources: CoT resources such as sensors and actuators can be shared among
processes and systems. This implies a higher utilization, and, thus, a higher efficiency.

• Modular composition: CoT resources can be combined (orchestrated) in different ways to create a
variety of smart-systems customized to individual stakeholders’ needs.

6

104 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

• Rapid deployment and scalability: The orchestration of CoT resources can be rapidly deployed
when needed, scaled up or down when needs change, and released when no longer needed.

• Reliability and resiliency: The ability to dynamically change the resources used by the system
helps the resulting systems to be reliable and resilient.

Very recently, a further extension of cloud computing, called fog computing [3,4], has been pro-
posed, in order to reach “the very edge of the network” (Fig. 6.1).

This paradigm has been introduced to support some specific requirements of IoT applications:

• edge location and location awareness (instead of location ignorance, typical of cloud computing)
• geographical distribution of a very large number of nodes (instead of centralized clusters)
• mobility (through wireless access)
• real-time interaction (instead of batch processes)
• resource heterogeneity

As a consequence, this recent paradigm shift allows CoT to leave on the edge the part of the com-
putation that involves sensing and actuating and, thus, to have low latency. Furthermore, this allows
for shareable resources and multi-tenancy. Therefore, both CoT and fog computing can be delivered
according to the three classical models of cloud computing (Fig. 6.2):

• SaaS: For each thing, a set of services are identified and then delivered (eg, see [5]).
• PaaS: Physical things are managed by the cloud provider; they may be used by means of

programming languages, libraries, and tools supported by the provider (eg, see [6,7]). The
consumer neither manages nor controls the underlying cloud infrastructure.

• IaaS: Physical things are virtualized in order to allow multi-tenancy and their sharing among
different systems [8].

Each of these can be specialized to a specific delivery model, depending on the given specific
problem to solve. Some examples [3] are Sensing and Actuation as a Service (SAaaS) that enables

FIGURE 6.1 Cloud and Fog Computing

1056.2 BACKGROUND

ubiquitous management of sensors and actuators using typical control logics of cloud computing, Data
as a Service (DaaS) that enables ubiquitous access to any kind of data, and Sensor Event as a Service
(SEaaS) that enables services triggered by sensor events.

Put in a nutshell, IoT is moving toward cloud computing, and, then, toward fog computing. As a
consequence of this trend, the virtualization inside embedded systems is required. At this point, two
fundamental questions arise:

Q1. Are the current hardware technologies for embedded systems appropriate for virtualization?
Q2. Are the current virtualization techniques appropriate for embedded systems? If so, what is the

most appropriate technique?

This chapter tries to provide answers to the aforementioned questions. In order to do that, Section 6.2
surveys three basic virtualization techniques [9–11] for embedded systems [12]: full virtualization and
paravirtualization (as instances of hardware-level virtualization), and containers (as an instance of op-
erating-system-level virtualization). Section 6.3 discusses which kinds of requirements are introduced
by real-time needs. Section 6.4 faces the problem from a practical point of view, and reports some
experimental results using as a testbed a Cubieboard2: a low-cost, low-energy, ARM Cortex-A7-based
device with limited performance, but with hardware that supports virtualization. Such experiments first
allow us to provide an answer to the aforementioned questions; however, some aspects, such as real
time, should still be explored and be a part of future research. The latter is discussed in Section 6.5.
Finally, some concluding remarks are reported in Section 6.6.

6.2 BACKGROUND
Since the origins of time-sharing operating systems, designers pointed to providing access to machine
resources in a transparent manner, given to the applications the illusion that resources are owned by
them even if they are shared among other applications [13]. In other words, each application runs on

FIGURE 6.2 The Three Delivery Models of Fog and Cloud-of-Things Computing

106 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

a “virtual” machine. The resulting virtualization techniques to apply depend on the interface level at
which they operate. According to a well-known machine reference model (Fig. 6.3), the virtualization
techniques can operate at the Instruction Set Architecture (ISA) level or at the Application Binary In-
terface (ABI). As a consequence, the virtualization techniques can be classified in System Level virtu-
alization (exposing an ISA) and Process Level virtualization (exposing an ABI), as depicted in Fig. 6.4.

Concerning hardware-level virtualization, basically two virtualization technologies are used: full
virtualization and para-virtualization. In full virtualization the virtualized interface provided to the
guest OSs is identical to the host machine, so the OSs do not have to be modified in order to run on
guest VM. Paravirtualization, as the name suggests, provides an interface which differs from the host
machine; in this case a modified OS is needed in order to run on virtual machines. Furthermore, it
should be noted that hardware-level virtualization requires a hypervisor (also called Virtual Machine
Manager or VMM) in order to manage VMs. As a consequence, hardware-level virtualization requires
a hierarchical scheduling: an inter-VM scheduler to choose which VM will be executed, and an intra-
VM scheduler for each VM to schedule VM tasks. Each scheduler is not aware of the existence of the
others, due to the needing of isolation. There exists two kinds of hypervisors: Type-I hypervisors and
Type-II hypervisors.

FIGURE 6.4 Virtualization Technique Taxonomy

FIGURE 6.3 A Machine Reference Model With its Three Interface Levels

API, Application Programming Interface; ABI, Application Binary Interface; ISA, Instruction Set Architecture.

1076.2 BACKGROUND

Type-1 hypervisors, or bare-metal hypervisors (Fig. 6.5A), run directly on the physical hardware.
They offer independent and isolated partitions that virtualize critical-hardware devices, and also pro-
vide services for interpartition communication and control. This type of hypervisor is particularly
suited for real-time systems, because they are close to the hardware (thus having lower overhead than
Type-2 hypervisors) and are able to use hardware resources directly. Examples of Type-1 hypervisors
are VMWare, ESX, XtratuM [14], and Xen [9].

Type-2 hypervisors (Fig. 6.5B) run on top of operating systems, where they act like hosts. In this
type of hypervisor, the host operating system runs on top of the hardware, and the hypervisor is a high-
level software layer running different guest operating systems. Type-2 hypervisors are easier to use and
manage, but they have a higher overhead than Type-1 hypervisors. Examples of Type-2 hypervisors are
Virtualbox, Oracle VM Server, and KVM [15].

Concerning process-level virtualization, this chapter focuses on virtualization at operating-system-
level, as this is the level that can be used for an IaaS delivery model. A popular technique for this kind
of virtualization consists in the container-based virtualization [16] (Fig. 6.5C). It should be noted that
such a solution, unlike hardware-level virtualization, does not need a hypervisor to run guest operating
systems; rather, it is based on the virtualization of the OS system calls: thus, several software contain-
ers and physical resources can be shared to manage the system calls coming from each container. As
a consequence, the guest operating system coincides with the host operating system that allows for
multiple isolated user-space instances, and, thus, no hierarchical scheduling is required. Examples of
container-based virtualization are LXC, FreeBSD Jails, and OpenVZ.

6.2.1 ARM VIRTUALIZATION EXTENSIONS
ARM processors gained virtualization extensions fairly recently, with the ARMv7 [17] and ARMv8
[18] architectures. This instruction set allows ARM processors to virtualize CPUs, memory, interrupts,
and timers. In order to simplify the use of hypervisors on ARM architectures, ARM added a new pro-
cessor mode, the Hyp mode, with higher privileges compared to conventional kernel and user modes.
Hyp mode is used during the execution of a VM. When a VM requires servicing by the hypervisor, the
hardware traps to the Hyp mode, giving control to the hypervisor. Once the hypervisor terminates its
work, the CPU switches to kernel or user mode, and the control is returned to the VM. The virtualization
of the physical memory is based on a translation mechanism. Indeed, VMs addresses are Intermediate
Physical Addresses (IPAs) and they have to be translated into physical addresses (PAs), which refer to

FIGURE 6.5 Hardware-Level and Process-Level Virtualization Taxonomy

(A) Hardware-level virtualization, Type I Hypervisor; (B) hardware-level virtualization, Type II Hypervisor;
(C) operating system level virtualization, Container based.

108 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

the physical memory. To that end, ARM provides Stage-2 page tables which allow the translation from
guest addresses to host ones. In the ARM architecture, interrupts are virtualized, extending the Generic
Interrupt Controller (GIC) architecture to Virtual GIC (VGIC). VGIC provides an interface for each
CPU and a corresponding control interface to be used by the hypervisor. This way, each VCPU commu-
nicates with its own VGIC interface, using the kernel mode of the VM. Similar to interrupts, physical
timers and counters are associated with virtual timers and virtual counters, respectively. Only the hyper-
visor in Hyp mode can manage the physical timers and counters, but VMs can control the virtual ones.

6.2.2 XEN ARM VIRTUALIZATION
Xen [9] is a lightweight, high-performance, open-source Type-1 hypervisor. Like KVM, it allows several
instances of an operating system or different operating systems on the same physical host to run. As Type-
1 hypervisors, in Xen, virtualization is based on a microkernel loaded during the boot process, which
makes it possible to run several VMs. Such a microkernel has the advantage of having a small memory-
footprint (around 1 MB) and a limited interface for guests that results in a more robust and secure virtu-
alization as compared to other hypervisors. Upon such a microkernel, Xen runs two kinds of guest VMs,
namely, domains. The Dom0 domain, one per physical host, is the privileged domain, and it is the only
one that has direct access to the underlying hardware. This domain provides paravirtualized back-ends in
order to give access to disks, NICs (Network Interface Cards), consoles, and other virtualized resources
to the unprivileged domains (DomUs). Hence, DomUs are completely isolated from each other and can
access physical resources by means of paravirtualized front-ends. In common configurations, Dom0 has
the only role of a Xen controller, and DomUs are used to run guest VMs. On ARM architectures, Xen
exploits, whenever possible, the ARM CPU hardware virtualization extensions. In particular, Xen com-
pletely runs in Hyp mode; the kernel uses the ARM hvc instruction to invoke hypercalls to Xen, and Xen
uses second-stage translation to assign memory to VMs. This fosters Xen to be a mature virtualization
solution for embedded boards, even if it requires a CPU which supports virtualization.

6.2.3 KVM ARM VIRTUALIZATION
KVM stands for Kernel-based Virtual Machine. KVM is a Type-2 hypervisor based on the Linux ker-
nel, which supports a variety of processors with hardware virtualization extensions. KVM was merged
in the Linux kernel in 2007, and over the years it was ported from x86 to a number of different architec-
tures, including PowerPC and ARM. KVM consists of a loadable kernel module that provides the core
virtualization infrastructure and different processor-specific modules. Using them, the Linux kernel acts
as a host that can run multiple VMs, each with private virtualized hardware. On the ARM architecture
porting, KVM introduces split-mode virtualization, allowing a hypervisor to split its execution across
CPU modes [19]. This means that KVM can use the Hyp mode provided by ARM processors with
hardware virtualization capabilities. The hypervisor is split into low-visor and high-visor components.
The low-visor runs in Hyp mode, deals directly with the hardware, and manages interrupts and the iso-
lation of execution contexts. The high-visor, instead, runs in kernel mode and uses the Linux kernel to
execute operations that do not directly need access to the Hyp mode. As a Type-2 hypervisor, KVM al-
lows the VMs to use the real-host processor (thus being transparent to them), using context switches to
alternate the host and the VMs on the processor. As such, the role of the hypervisor is to save and restore
the state of the host and/or VMs during the context switches. On the ARM architecture, during these

1096.2 BACKGROUND

operations the Hyp stack is used to store register content, and the Stage-2 page table base-register-con-
tent is modified accordingly to the VM or host that has to be executed. On every architecture, interrupts
may be trapped, depending on which kernel is going to be executed. KVM uses the Stage-2 translation
page-table in order to access the memory allocated to each VM, thus simplifying memory virtualization
architecture. I/O virtualization, instead, is based on load and store operations to MMIO device regions.
The Stage-2 translation makes it impossible for a VM to use the physical devices directly. Finally,
KVM virtualizes the interrupts, using the kernel to trap physical-device interrupts to the Hyp mode,
and forwarding them to the VMs by means of virtual interrupts. Timer virtualization, instead, is based
directly on ARM hardware virtualization features, allowing VMs to directly read timers and counters.

6.2.4 CONTAINER-BASED VIRTUALIZATION
Aside from hypervisors, in recent years a new virtualization technology has reached the proper ma-
turity level to be adopted as a virtualization solution in enterprise environments. Such technology is
based on containers [11,16,20,21], a software solution which provides hardware resource-sharing and
enables the isolation of processes confined to a container from others that run on other containers. The
basic principle of containers is to guarantee resource sharing and isolation without needing hardware
virtualization or hardware requirements. Container technology is based on kernel ABI virtualization,
and does not use hypervisors. In this way, groups of processes may use the same operating system
without needing hardware-level virtualization; they only need access to the function provided by the
underlying kernel. Originally, this idea was introduced in container-based operating systems, such as
Solaris 10 [22], Virtuozzo [23], and Linux-VServer [24]. It is worth mentioning the BSD chroot() [25],
introduced in 1982, which proposes a first method to obtain isolation by creating different containers
where processes may run without access to others running in other containers. Because virtualization
acts at the OS system call-level and it does not need hypervisors or other mechanisms to virtualize an
entire physical machine, container-based virtualization provides near-native performance in terms of
overhead, while maintaining a good level of isolation [26]. In recent years, container technology has
become popular in GNU/Linux operating systems with the Linux Containers (LXC) [27]. Similar to
other container-based virtualization solutions, Linux Containers takes advantage of OS system calls to
enable virtualization. With respect to other solutions, Linux Containers became a de-facto standard for
container-based virtualization, and became a part of the official Linux kernel. Modern Linux contain-
ers take advantage of cgroup [28] and namespaces, which guarantee isolation among the containers.
cgroups can be thought of as resource controllers that work on groups of processes. In the Linux kernel
there are cgroups for controlling block devices, CPU resources, CPU affinity for a group of processes,
devices, suspending and resuming processes, memory allocation, packet classification and prioritiza-
tion, and access to performance events. These controllers manage resources assigned to groups of
processes (processes that run inside a container). Forked processes inside a container inherit permis-
sion from their parent processes. Namespaces can be thought of as extensions of chroot(), which remap
host resources (network interfaces, process IDs, hosts, mount points, users) to resources shown in the
containers. By means of namespaces, processes may access the real resources of the host, maintaining
a point of view on virtualized ones. Hence, container-based virtualization solutions give the illusion of
working on a real system, but abstract only the system-calls’ access. For this reason, this kind of virtu-
alization does not need any particular requirement when it is used on embedded hardware. However,
by design, each container is tightened to the host-kernel version.

110 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

6.3 VIRTUALIZATION AND REAL-TIME
As stated in Section 6.1, cloud- and fog-computing architectures and methodologies are increasingly
applied in IoT scenarios, thus generating the need for virtualization solutions for embedded systems.
Indeed, in recent years a wide range of virtualization technologies has been deployed in the embedded-
systems domain, including avionic systems, industrial automation, telecommunication systems, etc.
Computing applications in these domains often have strict timing and performance constraints, thus mak-
ing virtualization in embedded systems very different from conventional virtualization. Virtualization on
embedded systems typically places a stronger emphasis on issues like real-time performance, security,
and dependability in open and shared computing environments. [29]. This means that to meet real-time
requirements, virtualized real-time systems not only have to guarantee service-level agreements, such as
in typical cloud applications, but must also enforce temporal and spatial isolation between different VMs.
The increasing need to control the temporal behavior of the virtualized applications and enhance their
predictability led to several real-time virtualization techniques [30]. Following the terminology adopted
in [31], VMs using these techniques are named in the following as real-time virtual machines (RT-VMs).

A number of commercial real-time hypervisors are available on the market, such as the ones pro-
duced by WindRiver, Acontis Technology, SysGO, OpenSynergy, LynuxWorks, or Real Time Sys-
tems GmbH. However, these hypervisors are usually strongly tied to particular application domains,
and their use in different domains frequently highlights suboptimal performance and raises low-level
compatibility problems [31]. At the same time, open-source general-purpose hypervisors like Xen and
KVM are the focus of strong research and development efforts to make them compliant with real-time
requirements outlined previously. This makes it possible to compare Type-1 and Type-2 hypervisors
with respect to real-time requirements through two different widely deployed and well-documented
solutions. A different approach to real-time virtualization is to base it on OS-level virtualization and a
real-time operating system (RTOS) at the host level. This simplifies some of the challenges to integrate
real-time computing with virtualization, in general at the cost of diminished flexibility, compared to
that of Type-1 and Type-2 hypervisors. An example of this approach is LXC [32].

The main technical and research challenges to integrate real-time computing in virtualization are:

• Design of a hypervisor compliant with real-time requirement
• Real-time scheduling, both inter- and intra-RT-VMs
• Network communication between RT-VMs

Regarding the design of a real-time hypervisor compliant with the requirements previously out-
lined, we can further identify three different areas of intervention: interrupts translation, timer access,
and SMP (symmetric multiprocessing) support.

Interrupts translation consists of transforming hardware interrupts to software interrupts, and for-
warding them to the host operating system. It is an operation typically done by the hypervisor. For a real-
time hypervisor, interrupt translation is of great importance, because it can be a source of unexpected la-
tencies. Indeed, each VM is typically associated with a queue of interrupts to be serviced, but will serve
them only when the hypervisor scheduler designs them for execution. This means that if more virtual
CPUs are ready to execute, then interrupts can be serviced with latencies of up to tens of milliseconds.

Timer access is also of great importance in the design of a real-time hypervisor. Time measure-
ments must be immediately available to applications requiring access to them. RT-VMs need time
measurements to perform critical tasks such as scheduling, resource management and accounting.

1116.3 VIRTUALIZATION AND REAL-TIME

To avoid unpredictable behaviors, the real-time hypervisor scheduler must be designed to influence
RT-VM time measures as little as possible.

A good real-time hypervisor must also ensure a uniform progress rate among the virtual CPUs,
especially in the presence of multicore RT-VMs. A typical problem that can arise when virtual CPUs
are not guaranteed a uniform progress rate is the lock-holder preemption problem [29], which happens
when the kernel of an RT-VM attempts a spin-lock operation, waiting for a different RT-VM which was
preempted before. This can result in latencies in the order of tens of milliseconds, whereas a typical
spin-lock operation concludes in tens of microseconds.

Scheduling is of paramount importance for real-time virtualization. In general, both Type-1 and
Type-2 hypervisors have no knowledge about tasks within each VM, and schedules them like black-
boxes, trying to minimize VM response time; this enhances modularity and is in general an approach
good enough for general-purpose virtualization. However, in a real-time virtualization architecture the
hypervisor must ensure that all tasks—including tasks within each VM—meet their deadlines. There-
fore, for a real-time hypervisor it is essential to access to task details within each VM. This is called
task-grain scheduling [33]. There are three different approach to task-grain scheduling.

• In Type-1 virtualization, the guest OS is modified to disclose information about its internal tasks
to the real-time hypervisor via hypercalls

• In Type-2 virtualization, information about internal VM tasks are inferred by the real-time
hypervisor, without modification to the guest OS

• OS-level virtualization architecture can be modified to use the host OS scheduler, thus letting the
real-time kernel handle the scheduling of all tasks [34].

The solutions outlined previously for Type-1 and Type-2 hypervisors make use of hierarchical sched-
uling techniques. Hierarchical scheduling enables resource partitioning and allocation among a set of
 virtualized real-time applications, enhancing temporal isolation and yielding a reduction of complexity in
applications [35]. In real-time hypervisors, hierarchical scheduling is usually deployed on two hierarchical
levels: a real-time inter-VM scheduler and a real-time intra-VM scheduler. This architecture is used both in
Xen and in KVM approaches to real-time virtualization on ARM embedded architectures.

An example of a Type-1 real-time hypervisor is RT-Xen [15,36]. RT-Xen is a fork of the Xen proj-
ect, including a fixed-priority scheduler based on the real-time scheduling theory, and used to schedule
VMs. The schedulability of the system can be formally examined because the real-time hypervisor
scheduler (inter-VM scheduler) and the real-time scheduler (intra-VM scheduler) in the RT-VMs are
placed in a hierarchical scheduling architecture. RT-Xen exhibits only a moderate scheduling overhead
and can provide real-time scheduling services to RT-VMs with a quantum of 1 ms [15]. RT-Xen re-
cently evolved into RT-Xen 2.0, providing a new multicore real-time scheduler, which can be used for
global and partitioned scheduling. Several server algorithms are also provided to schedule low-critical
tasks in combination with high-critical ones [37].

Type-2 real-time hypervisors have received far less attention from the real-time community. In re-
cent years, the bulk of the efforts focused on KVM. Technical challenges and possible solutions to make
KVM a real-time hypervisor are presented in [38]. It is possible to devise a real-time scheduling archi-
tecture to enhance KVM real-time capabilities, using SCHED_DEADLINE [39] for host OS schedul-
ing, and coupling it with proper real-time scheduling policies to schedule RT-VM tasks. In this way it
is possible to use real-time theoretical techniques to analyze system schedulability, as it happens for
RT-Xen. To the best of our knowledge, there is no paper published that details progress in this respect.

112 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

OS-level real-time virtualization ensures temporal and spatial isolation between real-time applica-
tions through the use of multiple domains with different namespaces; this also allows achievement
of a certain degree of security and protection between different applications. As stated previously,
it is impossible to run different kernels on the same host OS using OS-level virtualization; however,
this is hardly a limitation on embedded architectures, which are often conceived to run a set of pre-
determined applications. Thus, being more lightweight of system-level virtualization solutions, OS
real-time virtualization can be a good candidate for virtualization on embedded systems. Among the
different OS-level virtualization mechanisms, LXC seems to be the most promising with respect to
real-time requirements. Currently, LXC does not enforce a real-time scheduling policy and does not
manage resources according to real-time requirements by default; instead it uses the standard Linux
kernel policies, that is, CFS to schedule containers for execution and CFQ to manage resource access.
However, it is possible to modify these policies, and use instead real-time scheduling policies, like
SCHED_DEADLINE [39] to schedule containers, and the deadline scheduler for I/O activities.

6.4 EXPERIMENTAL RESULTS
This section details experimental results on three different virtualization setups that we have created
in our lab. Experiments were carried on the same testbed, a System-on-a-chip (SoC) offering virtual-
ization features. We compared three different virtualization approaches using three different software
configurations: Xen was chosen as an instance of a Type-1 hypervisor, KVM as an instance of a Type-2
hypervisor, and LXC was tested as an OS-level virtualization solution. Each experiment was repeated
for the three- software configuration.

The first part of this section describes the reference architecture of the SoC used in the experiments
and the software configurations used. Test benchmark suites that we used in the experiments are also
described. Finally, experimental results are presented and discussed.

6.4.1 REFERENCE ARCHITECTURE
We chose a CubieTech Cubieboard2 SoC for our experiments. The Cubieboard2 is a low-cost, low-
energy, Allwinner A20 SoC. This SoC has the following components:

• CPU: Dual-core ARM Cortex-A7 MPCore
• GPU: Mali-400 MP2
• Memory: 1 GB DDR3 RAM
• Storage: 4 GB NAND, microSD slot, SATA port
• Network: 100 Mbit/s ethernet
• USB: 2 USB 2.0 port, 1 USB 2.0 OTG

The ARM Cortex-A7 MPCore (and other processors of the ARMv7-A and ARMv8-A families)
provides the ARM Hardware Virtualization Extensions [40]. These hardware extensions are required
both by Xen and KVM hypervisors. An 8GB microSD Class 10 was used as a storage device for all of
the described configurations. Please note that the GPU, SATA port, and USB 2.0 ports were not used
for any of the benchmark tests described later.

All three software configurations were based on Debian [41] GNU/Linux armhf. Unfortunately,
different packages needed for Xen and KVM were not available in the major GNU/Linux distributions,

1136.4 ExPERIMENTAL RESULTS

and so they had to be cross-compiled. In particular, we needed to cross-compile Linux-3.18.18, Xen-
4.5.1, and Qemu-2.3.0.

For each virtualization solution, an ad-hoc kernel configuration was used in order to enable just the
needed drivers for the SoC and drivers for the particular virtualization solution. Only those services
that were strictly needed were installed and enabled, both in host systems and guest systems, in order
to avoid potential performance degradations.

6.4.2 BENCHMARKING TOOLS
The benchmark tool used for evaluating CPU-bound operations, memory allocation, and transfer speed
was called “sysbench.” “sysbench” is modular, cross-platform, multi-threaded, and allows for the eval-
uation of OS parameters that are important for a system running a database under intensive load [42].
The evaluation of I/O-bound operations was done by means of “dd” and “iPerf3.” “dd” first appeared
in Unix version 6 and it simply copies an input file to an output file. It was used to analyze the microSD
performances in writing sequential data. “iPerf3” is a tool for active measurements of the maximum
achievable bandwidth on IP networks. It supports tuning of various parameters related to timing, pro-
tocols, and buffers. For each test it reports bandwidth, packet loss, and other parameters [43]. “iPerf”
was originally developed by NLANR/DAST (National Laboratory for Applied Network Research,
Distributed Application Support Team); it was rewritten and is now currently maintained and devel-
oped by ESnet, part of Lawrence Berkeley National Laboratory. “iPerf” was used to measure TCP/IP
bandwidth for the integrated 100 Mbit/s ethernet port.

6.4.3 DISCUSSION
6.4.3.1 CPU Performance Analysis
To analyze CPU performance, sysbench provides a CPU benchmark that consists of the calculation of
prime numbers up to an arbitrary value provided as an option. All the calculations are done with 64-bit
integers, using Euclid’s algorithm.

In order to analyze the latencies introduced by the virtualization solutions, the test was performed
first without any DomUs, KVM guests, or LXC containers, and then by increasing the number of Do-
mUs, KVM guests, and LXC containers up to four simultaneously:

• 0 DomUs/guests/containers
• 1 DomUs/guests/containers, two virtual CPUs each DomUs/guests/containers, memory: 512 MB

each DomUs/guests/containers
• 2 DomUs/guests/containers, two virtual CPUs each DomUs/guests/containers, memory: 256 MB

each DomUs/guests/containers
• 4 DomUs/guests/containers, two virtual CPUs each DomUs/guests/containers, memory: 128 MB

each DomUs/guests/containers

As sysbench’s CPU test allows spawning several threads, for all of the previous configurations,
1, 2, and 4 threads were used to do the calculation. All of the CPU tests calculated the first 10,000
prime numbers. The results are reported in Table 6.1 for the host machines and Table 6.2 for the guest
 machines.

1
1

4
C

H
A

P
TE

R
 6

 VIR
TU

A
LIZATIO

N
 O

N
 EM

B
ED

D
ED

 B
O

A
R

D
S

Table 6.1 Benchmark Completion Time (Hosts)

Host

1 Thread 2 Threads 4 Threads

KVM XEN LXC KVM XEN LXC KVM XEN LXC

VM Avg.
Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev.

0 290.31 0.00 291.36 0.00 290.47 0.00 145.51 0.00 145.87 0.00 145.32 0.01 145.70 0.01 145.97 0.01 146.30 0.01

1 290.28 0.00 293.79 0.00 290.85 0.00 292.94 0.00 292.27 0.01 290.92 0.01 218.44 0.02 292.58 0.02 291.23 0.01

2 439.77 0.00 443.31 0.00 435.13 0.00 439.28 0.05 439.36 0.01 436.63 0.02 291.70 0.03 439.89 0.13 436.54 0.02

4 746.82 0.00 752.09 0.00 728.66 0.00 732.71 0.03 734.38 0.01 727.61 0.04 439.75 0.03 735.58 0.04 728.04 0.06

1
1

5
6

.4
 ExP

ER
IM

EN
TA

L R
ESU

LTS

Table 6.2 Benchmark Completion Time (Guests)

GUEST

1 Thread 2 Threads 4 Threads

KVM XEN LXC KVM XEN LXC KVM XEN LXC

VM Avg.
Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev. Avg.

Std.
dev.

1 295.37 0.00 293.71 0.00 290.82 0.00 290.28 0.00 291.73 0.02 290.90 0.00 292.43 0.02 291.99 0.03 291.21 0.02

2 442.80 0.00 443.14 0.00 436.24 0.00 440.65 0.00 438.51 0.05 436.74 0.03 442.89 0.02 438.97 0.05 436.38 0.05

4 753.89 0.00 751.19 0.00 727.59 0.00 739.60 0.03 732.83 0.02 727.19 0.02 742.71 0.09 733.77 0.16 727.61 0.07

116 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

In Table 6.1, we can see the benchmark’s completion time for Xen, KVM, and LXC hosts, depend-
ing on the number of VMs. Performances are very similar, with LXC performing slightly better when
four VMs are used. Fig. 6.6 represents the hosts’ performance for the configuration, with 2 threads for
each host and VM. It should also be noted that in the 4-thread experiment, the KVM host shows better
performance with respect to Xen and LXC. This result is a consequence of the fact that KVM uses the
Linux kernel scheduler as the inter-VM scheduler. This means that from the scheduler point of view
each VM is a task to be scheduled on the host, just like the benchmark’s tasks; thus tasks running on
VMs suffer from an overhead.

In Table 6.2, the benchmark’s completion time for guests is depicted. In this case, too, as the
number of VMs increases, LXC performs slightly better than virtualization solutions based on hy-
pervisors. Fig. 6.7 represents the guests’ performance for the configuration, with 2 threads for each
host and VM.

6.4.3.2 Memory Performance Analysis
To analyze write memory (RAM) allocation and write speed, sysbench provides a memory bench-
mark that by default sequentially writes blocks of memory. In order to analyze the memory-write
performance, 2 GB data were sequentially written in the memory in blocks of 1024 bytes—one at a
time—on the host and on the guest. Finally, two virtual CPUs and 512 MB of memory were assigned
to the guest systems.

Fig. 6.8 illustrates experimental results. Performances are similar, with hypervisor solutions slight-
ly suffering indirect access to memory, with the notable exception of the KVM host. LXC performs
better than Xen and KVM.

FIGURE 6.6 Benchmark Completion Time (Hosts) for the Configuration With 2 Threads

1176.4 ExPERIMENTAL RESULTS

FIGURE 6.8 Memory-Writing Time Performances

FIGURE 6.7 Benchmark Completion Time (Guests) for the Configuration With 2 Threads

118 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

6.4.3.3 Memory Footprint Analysis
The memory footprint for the three virtualization solutions taken into consideration are analyzed. The
analysis is performed booting a single VM, waiting for the boot process to settle, and then using stan-
dard tools to determine VM’s memory footprint on the system. Fig. 6.9 shows experimental results.
Unsurprisingly, LXC is relatively light on its memory footprint; indeed, the gap between LXC and
hypervisor virtualizers’ data is similar to the Linux kernel image size, as expected.

6.4.3.4 I/O Performance Analysis
Unix “dd” utility was used to analyze microSD performance. “dd” allows reading and writing data
from arbitrary files. The tests were done by reading from the zero device (/dev/zero)— that on Unix
systems generates an infinite stream of zeros—and sequentially writing to a file stored in the microSD.
100 blocks was written in a file selecting a block size of 1024 KiB (for small block sizes the microSD
performances are mediocre). In order to avoid kernel-buffer cache and wait for I/O completion respec-
tively, the dd “direct” and “dsync” flags were used. The tests were done with a configuration similar
to the CPU tests:

• 0 DomUs/guests/containers
• 1 DomUs/guests/containers, two virtual CPUs each DomUs/guests/containers, memory: 512 MB

each DomUs/guests/containers
• 2 DomUs/guests/containers, two virtual CPUs each DomUs/guests/containers, memory: 256 MB

each DomUs/guests/containers
• 4 DomUs/guests/containers, two virtual CPUs each DomUs/guests/containers, memory: 128 MB

each DomUs/guests/containers

FIGURE 6.9 Memory Footprint

1196.4 ExPERIMENTAL RESULTS

For the tests, we used a “dd” process running on each host and guest system simultaneously.
 Execution time and bandwidth for hosts and guests are reported in Tables 6.3 and 6.4, respectively.
The bandwidths are also plotted in Figs. 6.10 and 6.11.

It is possible to see that in both cases Xen outperforms KVM and LXC, scaling better than them
with the number of VMs used in the experiment.

6.4.3.5 Network Performance Analysis
Network performance analysis has been conducted by means of “iPerf3.” “iPerf3” allows the evalu-
ation of both TCP and UDP throughput. It can act either as a server or as a client. A second machine
was directly connected to the Cubieboard2 via an ethernet crossover cable, and used as a server, with
the Cubieboard2 acting as a client. The DomU, KVM guest, or LXC container was connected to the
network interface of the respective host system via a virtual network bridge.

In that way, the VM was transparently accessible from the machine that acted as a server. In order
to measure latencies introduced by the virtualization solutions, two tests were performed: one for the
host and another one for the guest, for the three virtualization solutions taken in exam. The results are
depicted in Fig. 6.12. Fig. 6.12 shows how all of the different virtualization solutions have similar per-
formances, both hosts and guests. KVM guests that achieve slightly poorer results represent the only
exception.

Table 6.3 Disk I/O Performances (Host)

HOST

100 MiB

KVM XEN LXC

VM s KiB/s s KiB/s s KiB/s

0 11.09 9,457.96 11. 15 9,407.81 10.34 10,142.54

1 52.93 1,980.95 20.00 5,242.38 92.17 1,137.67

2 176.00 595.77 30.81 3,403.72 177.18 591.81

4 440.07 238.28 162.81 644.06 291.64 359.54

Table 6.4 Disk I/O Performances (Guest)

GUEST

100 MiB

KVM XEN LXC

VM s KiB/s s KiB/s s KiB/s

1 126.68 827.76 26.57 3946.82 105.74 991.65

2 263.29 398.25 44.86 2337.19 286.67 365.77

4 595.08 176.21 248.56 421.86 496.38 211.24

120 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

FIGURE 6.10 Disc I/O Bandwidth (Hosts)

FIGURE 6.11 Disc I/O Bandwidth (Guests)

1216.5 FUTURE RESEARCH DIRECTIONS

6.5 FUTURE RESEARCH DIRECTIONS
The experiments reported in the previous section provided a satisfactory answer to the two questions
stated at the beginning of this chapter. As discussed in the next section, virtualization on embedded
systems provides a support to most of the IoT requirements. Nevertheless, some more questions worth
being answered arise, and some of them are reported here. The first one is the following:

Q3. Are virtualization techniques appropriate for systems with real-time constraints?
 Virtualization introduces a latency in CPU performance that seems to grow with a linear law,

according to Tables 6.1 and 6.2 and Figs. 6.6 and 6.7. Is it possible for a real-time scheduler to
take into account such a latency in a precise way so as not to violate deadlines? The integration
of real time and virtualization is still unstable, and therefore has not been possible yet to test.
From a theoretical point of view, if the performance-decaying law is known, it is possible to
define an appropriate real-time scheduling algorithm. From a practical point of view, this should
still be proved; as a consequence, a future research-direction consists of studying real-time
aspects in a virtualized environment.

 Another question is the following:
Q4. Are embedded devices appropriate for storage?

 According to the experimental results reported in the previous section, microSD are cheap
storage devices with limited performances, and, thus, are not appropriate for virtualization. This
is in line with the current trend of storing sensor data in suitable datacenters. Nevertheless, the
world of storage technologies is moving fast, and it is reasonable to assume that, in a few years,

FIGURE 6.12 Network Bandwidth Performance

122 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

faster and cheaper technologies will be available. In the meantime, it would be interesting to
test embedded devices with different present-day storage technologies, for example, devices
equipped with a SATA storage. This is another research direction to explore.

 One more question is the following:
Q5. Are embedded devices appropriate for internal network virtualization?

 The SNSS scenario requires each VM to be connected with the rest of the cloud/fog. Usually
this means that a VM should not be connected to the other VMs running on the same device.
Nevertheless, a different scenario may require an internal network connection. This scenario has
not been considered as outside the scope of this chapter, but is still another research direction to
explore.

6.6 CONCLUSIONS
The principal aim of this chapter consisted of establishing if and under what assumptions, can embed-
ded systems (ie, low-cost, low-energy, and limited-performance computing architectures) be virtual-
ized. The experimental results seem encouraging: a very simple architecture such as a Cubieboard2
turns out to be enough for virtualization of computing and network resources. This allows the board
to be used to host virtual things (ie, a virtual device with sensors and actuators), and, thus, push the
computational effort on the edge of the cloud according to the principles of fog computing. Looking at
the two questions stated at the beginning of this chapter, it is now possible to provide a positive answer
for both of them. Regarding what would be the appropriate virtualization technology for embedded
devices, it seems there is no silver bullet. All of the three technologies have the same performance for
what concerns CPU virtualization and network controller virtualization (KVM has just a slightly lower
performance). Regarding the storage, Xen performs better than KVM and LXC, but it should be noted
that they all have poor performance in general. This seems to suggest that, at the current state-of-the-art,
such devices seem to be inappropriate for storage. Nevertheless, it should be pointed out that this result
mainly depends on the kind of storage that has been adopted and its low performance. A different kind
of storage, as, for example, one with a SATA interface, would have better performance. On the other
hand, that type of device is still too expensive or energy consuming. As a consequence, devices with lim-
ited storage performance should still be taken into account in the SNSS scenario. This justifies and ex-
plains the recent trend of moving sensor data into cloud datacenters instead of leaving them on “things.”

REFERENCES
 [1] Simmon E, Kim KS, Subrahmanian E, Lee R, de Vaulx F, Murakami Y, Zettsu K, Sriram RD. A vision of

cyber-physical cloud computing for smart networked systems. NISTIR 7951. NIST; 2013.
 [2] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and

future directions. Future Gen Comput Syst 2013;29(7):1645–60.
 [3] Botta A, de Donato W, Persico V, Pescapé A. On the integration of cloud computing and Internet of Things.

In: Future Internet of Things and cloud (FiCloud) international conference, EEEI; 2014. p. 23–30.
 [4] Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the Internet of Things. In: Proceedings

of the first edition of the MCC workshop on mobile cloud computing (ACM); 2012. p. 13–16.

http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0010

123REFERENCES

 [5] Botts M, Percivall G, Reed C, Davidson J. OGC® sensor web enablement: overview and high level
architecture. GeoSensor networks. Berlin, Heidelberg: Springer; 2008. p. 175–90.

 [6] OpenIoT Consortium. Open source solution for the Internet of Things into the cloud. http://www.openiot.eu/;
2012.

 [7] Alam S, Chowdhury MM, Noll J. Senaas: an event-driven sensor virtualization approach for Internet of Things
cloud. In: Networked embedded systems for enterprise applications (NESEA). 2010 IEEE international
conference; 2010. p. 1–6.

 [8] Yuriyama M, Kushida T. Sensor-cloud infrastructure-physical sensor management with virtualized sensors on
cloud computing. In: Network-based information systems (NBiS). 2010 thirteenth international conference
on IEEE; 2010. p. 1–8.

 [9] Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Warfield A. Xen and the art of virtualization. ACM
SIGOPS Operat Syst Rev 2003;37(5):164–77.

[10] Kivity A, Kamay Y, Laor D, Lublin U, Liguori A. Kvm: the linux virtual machine monitor. In: Proceedings of
the linux symposium; 2007. p. 225–230.

[11] Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L. Container-based operating system virtualization: a
scalable, high-performance alternative to hypervisors. ACM SIGOPS Operat Syst Rev 2007;41(3):275–87.

[12] Heiser G. The role of virtualization in embedded systems. In: Proceedings of the first workshop on isolation
and integration in embedded systems (ACM); 2008. p. 11–16.

[13] Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L. Container-based operating system virtualization: a
scalable, high-performance alternative to hypervisors. ACM SIGOPS Operat Syst Rev 2007;41(3):275–87.

[14] Popek GJ, Goldberg RP. Formal requirements for virtualizable third generation architectures. Commun ACM
1974;17(7):412–21.

[15] Xi S,Wilson J, Lu C, Gill C. Rt-xen: towards real-time hypervisor scheduling in xen. In: Proceedings of the
international conference on embedded software (EMSOFT), IEEE; 2011. p. 39–48.

[16] Scheepers MJ. Virtualization and containerization of application infrastructure: a comparison. In: 2014
Twenty-first twente student conference on IT; 2014, vol. 21. June 23. University of Twente.

[17] ARM Architecture Reference Manual. ARMv7-A and ARMv7-R Edition (Issue C). Cambridge, UK: ARM
Ltd.; 2014.

[18] ARMv8-A Reference Manual (Issue A.c). Cambridge, UK: ARM Ltd.; 2014.
[19] Dall C, Nieh J. KVM/ARM: The design and implementation of the linux ARM hypervisor. In: Proceedings

of the nineteenth international conference on architectural support for programming languages and operating
systems; 2014.

[20] Xavier MG, Neves MV, Rossi F, Ferreto TC, Lange T, De Rose CAF. Performance evaluation of container-
based virtualization for high performance computing environments. In: 2013 Twenty-first euromicro
international conference on parallel, distributed and network-based processing (PDP), IEEE; 2013. p. 233–240.

[21] Biederman EW. Linux networx. Multiple instances of the global Linux namespaces. In: Proceedings of the
Linux symposium; 2006.

[22] Oracle Solaris 10. http://www.oracle.com/us/products/servers-storage/solaris /solaris10/overview/index.
html; 2015.

[23] Virtuozzo. http://openvz.org/Virtuozzo; 2015.
[24] Linux-VServer. http://linuxvserver.org/; 2015.
[25] Chroot(2). https://www.freebsd.org/cgi/man.cgi?query=chroot&sektion=2; 2015.
[26] Felter W, Ferreira A, Rajamony R, Rubio J. An updated performance comparison of virtual machines and

Linux containers. IBM Research Division; 2014.
[27] Linux Containers. https://linuxcontainers.org/; 2015.
[28] Cgroups. https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt; 2015.
[29] Gu Z, Zhao Q. A state-of-the-art survey on real-time issues in embedded systems virtualization. J Softw

Engin Applic 2012;5:277–90.

http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0015
http://www.openiot.eu/
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0035
http://www.oracle.com/us/products/servers-storage/solaris%20/solaris10/overview/index.html
http://www.oracle.com/us/products/servers-storage/solaris%20/solaris10/overview/index.html
http://openvz.org/Virtuozzo
http://linuxvserver.org/
https://www.freebsd.org/cgi/man.cgi?query=chroot%26sektion=2
https://linuxcontainers.org/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0040

124 CHAPTER 6 VIRTUALIZATION ON EMBEDDED BOARDS

[30] Taccari G, Taccari L, Fioravanti A, Spalazzi L, Claudi A. Embedded real-time virtualization: state of the art
and research challenges. Real-time Linux workshop; 2014.

[31] García-Valls M, Cucinotta T, Lu C. Challenges in real-time virtualization and predictable cloud computing. J
Syst Archit 2014;60(9):726–40.

[32] Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose CAF. Performance evaluation of container-
based virtualization for high performance computing environments. In: Twenty-first euromicro international
conference on parallel. Distributed and network-based processing; 2013.

[33] Kinebuchi Y, Sugaya M, Oikawa S, Nakajima T. Task grain scheduling for hypervisor-based embedded
system. In: Proceedings of the tenth IEEE international conference on high performance computing and
communications; 2008.

[34] Augier C. Real-time scheduling in a virtual machine environment. In: Proceedings of junior researcher
workshop on real-time computing (JRWRTC), Nancy, March 29–30, 2007.

[35] Carnevali L, Pinzuti A, Vicario E. Compositional verification for hierarchical scheduling of real-time systems.
IEEE Trans Softw Engin 2013;39(5):638–57.

[36] Lee J, Xi S, Chen S, Phan LT, Gill C, Lee I, Lu C, Sokolsky O. Realizing compositional scheduling through
virtualization. In: 2012 IEEE 18th real-time and embedded technology and applications symposium (RTAS);
2012. p. 13–22.

[37] Xi S, Xu M, Lu C, Phan LTX, Gill CD, Sokolsky O, Lee I. Real-time multi-core virtual machine scheduling
in Xen. In: ACM international conference on embedded software (EMSOFT’14); 2014.

[38] Kiszka J. Towards Linux as a real-time hypervisor. In: Proceedings of the eleventh real-time Linux workshop;
2009. p. 215–224.

[39] Faggioli D, Trimarchi M, Checconi F, Bertogna M, Mancina A. An implementation of the earliest deadline
first algorithm in Linux. In: Proceedings of the 2009 ACM symposium on applied computing (ACM); 2009.
p. 1984–1989.

[40] Varanasi P, Heiser G. Hardware-supported virtualization on ARM. In: Proceeding APSys’11 proceedings of
the second Asia-Pacific workshop on systems, ACM. 2011. p. 1–5.

[41] Debian—The Universal Operating System. http://www.debian.org/; 2015.
[42] SysBench, a modular, cross-platform and multi-threaded benchmark tool. https://github.com/akopytov/

sysbench; 2015.
[43] iPerf3, TCP and UDP bandwidth performance measurement tool. http://software.es.net/iperf/; 2015.

http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00006-X/ref0050
http://www.debian.org/
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
http://software.es.net/iperf/

125

CHAPTER

MICRO VIRTUAL MACHINES
(MicroVMs) FOR CLOUD-
ASSISTED CYBER-PHYSICAL
SYSTEMS (CPS)

J.V. Pradilla*, C.E. Palau**
*Escuela Técnica Superior de Ingenieros de Telecomunicación at the Universitat Politècnica de Valencia, Spain;

**Distributed Real-Time Systems Research Group, Escuela Tecnica Superior de Ingenieros de Telecomunicación at the

Universitat Politecnica de Valencia, Spain

7.1 INTRODUCTION
At present, there is growth in the areas of application of information and communication technologies
(ICT). This expansion has managed to cover many human activities in an almost transparent way to the
own actors of the activity, making the man/machine relationship much closer.

Several reasons can be found supporting this phenomenon, including some directly linked to ICT
and its current development, such as: increased capacity, miniaturization, lower prices, and the accep-
tance of people in everyday use.

Moore’s Law (PhD Gordon Moore, 1965) describes the increased capacity in ICT, which becomes
clear by watching trends like these over time: operations per second of a processor, available volatile
memory for processing, non-volatile storage space, and interconnection speed in networks [1].

Similarly, miniaturization of ICT components also fits Moore’s Law, particularly the number of
transistors in an integrated circuit. As transistors and integrated circuits are the basic building blocks
of current hardware, evidence can be found of miniaturization in the size of sensors, actuators, robots,
computers, and smartphones [1].

For its part, the lowering prices of the components of ICT can be modeled by Robert’s Law (PhD
Lawrence Roberts, 1969), and can be evidenced by reviewing the computer performance per dollar or
the price of magnetic storage units over time [2].

In addition, other prominent factors linked to ICT growth are the availability of various devices that
fit applications or complex environments in time, environmental characteristics, prices, security, and
personal preferences. A widely known case is that of smartphones, which adapt to complex, diverse
markets and environments around the world.

Moreover, this trend of growth and scope of ICT glimpses a hyper-connected future in which devices are
ubiquitous and our interaction with them becomes more natural and close, creating a synergy between hu-
mans and machines for the development of information that allows for the effective use of natural resources.

Part of the man/machine relationship is based on the generation of data and information. Assum-
ing that man is a creative and social being who can take advantage of making his knowledge lasting

7

126 CHAPTER 7 MICRO VIRTUAL MACHINES

and accessible, and that, broadly, a machine is an instrument that processes data to generate actions or
information, a meeting point between man and machine can be found through the capture, storage, and
processing of data and information.

Thus, in reviewing the history of humanity, it is found that, information has been transmitted among
humans in oral or written form for centuries, having its first major revolution with the advent of print-
ing, and its second great revolution with the birth of the Internet. These two revolutions have enabled
global accessibility to information, reducing transfer costs, and making everyone who wanted it to be a
producer and consumer of knowledge.

However, under this paradigm, machines are far removed from that role of information producer/
consumer; they are relegated to be appropriate tools for the transmission and storage of that information.

For example, with the advent of Internet, information flow focused on human-oriented services,
such as the World Wide Web, email, file transfer, on-line conversations, telephony, and television.
Moreover, communication between machines focused on support services: routing, error handling,
security, and quality of service.

However, the big leap in the machines’ role came with the search engines, which began using the
services intended for humans and generating information relevant to us. Meanwhile, news aggrega-
tors did their thing, by using a service destined to share content and to create condensed and classified
information according to user preferences. Spam generators were other great pioneers in the role of
consumer/producer of information, because they looked for email addresses on the web and adapted
message templates to the recipients.

However, these examples are just some of the machines’ incursions to create information. At in-
dustry level, they began to automate the supply and distribution chains; in addition, many factories
gave way to robots that auto-adjusted their production routines, depending on the quality of inputs or
external production conditions. Similarly, at home, machines that made decisions on specific condi-
tions at the time of execution started to appear; artificial intelligence and fuzzy logic were two tools that
allowed the exploitation of this information for the efficient use of resources.

Moreover, man and machine have begun to share information to generate synergies that allow
better decision-making or improving processes. Recent examples of this interaction are found with
sports-measuring devices, which measure vital signs of the person, and generate reports in real time,
which can be used to tailor a sports routine or improve sleep patterns. Another outstanding example is
found in the software that supports management decision-making, which simulates possible scenarios
for the future of the company, based on the record of the current processes and on some business rules
that humans have inserted. These possible scenarios are useful for the management to define a set of
actions to take in order to obtain the simulated result.

However, there was still one missing step to complete the current situation: provide a way for
machines to share information so that there would be a collective knowledge usable for the same ma-
chines. This form of generating, sharing, and using information by machines without human interven-
tion was called the Internet of Things (IoT).

Likewise, machine to machine (M2M) communication has become more common today; vending
machines that report income and request inventory, virtual stores that send orders to automated transport
centrals and packages, and cars that publish their location and status to a command and control center
are examples that are becoming more common every day, of a network of machines working together.

This is how the current state of information and communications technologies is reached: machines
that communicate with each other in automated and collaborative processes, of which data is stored

1277.1 INTRODUCTION

and analyzed by computer systems, which, in turn, generate consolidated information useful for hu-
mans and machines, who, in turn, make decisions or perform actions that affect the behavior of the
entire system—thus creating a closed information cycle. These information/communication systems
in a closed cycle that influence and are influenced by the physical reality are known as cyber-physical
systems (CPS).

CPS are born from a precise intersection between computing, networking, and physical processes
[3]. They perceive the world through sensor networks and affect it by making use of actuators, robots,
and drones [4], while operations are monitored, coordinated, controlled, and integrated by a core of
computations and networks [5]. Thus, a feedback loop is created where physical processes affect cal-
culations and vice versa.

This intrinsic coupling of a CPS is manifested from the millimeter scale (micro-robots) to the kilo-
metric scale (SmartGrid), and independently (pacemaker), or as part of a larger CPS (robotic arm on
an assembly line). At the same time, the CPSs are linked to embedded systems and control theory [3].

Communication networks that enable the interconnection between components of a CPS are es-
sential, either in small, independent systems, or in large systems composed of other CPSs. They must
adjust to the environment in which the sensors/actuators are deployed, and to the system requirements
so that they can provide specific services, such as response time, bandwidth, or noise resistance.

For its part, the core that allows for coordination, monitorization, and control of operations must
deploy informatic systems that store and process data to generate information that can be used in an
automated way or with human intervention.

There are several examples of CPS today; the highlights include: aerospace systems, medical de-
vices, intelligent vehicles and roads, defense systems, robots, processes control, factory automation,
building control, environment control, and smart spaces [5]. IoT [3] is one of the CPS of more interest.

The IoT has been defined in many ways, and can be considered a concept still in development that
often goes beyond the limits set by a specific definition. This chapter will consider the IoT as a special
case of CPS.

Thus, according to IERC, the IoT is “A dynamic global network infrastructure with self-configuring
capabilities based on standard and interoperable communication protocols where physical and virtual
‘things’ have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are
seamlessly integrated into the information network” [6]. This definition contains important concepts,
such as that IoT is a global network and IoT integrates virtual and physical “stuff” through an informa-
tion network.

Another interesting definition of IoT for this chapter has been described by Gartner, which defines
the IoT as a “Network of physical objects that contain embedded technology to communicate and sense
or interact with their internal states or the external environment” [7].

Finally, to gain a more specific understanding about the concept of IoT, the original article by
Kevin Ashton can be referred to, where he describes the need to “empower computers with their own
means of gathering information, so they can see, hear and smell the world for themselves, in all its
random glory. RFID and sensor technology enable computers to observe, Identify and understand
the world—without the limitations of human-entered data” [8]; this highlights the machine’s role of
producer/consumer.

After one is clear on what CPS and the IoT are, it is interesting to deepen one’s understanding on
how these two concepts are related. In general, and as previously mentioned, the IoT is a specific case
of a CPS [3] of a large scale, and it can be composed, in turn, of other CPSs.

128 CHAPTER 7 MICRO VIRTUAL MACHINES

Unlike CPS, the concept of IoT proposes two restrictions: the first is that each object must be iden-
tifiable, and the second is that there must be a global interconnection [3]. In contrast, there are CPSs
that differ from the IoT by not including these two constraints. Examples of these are smart grids,
warplanes, and robot swarms.

CPSs differ in shape, size, and complexity [4]. However, once established, they are limited in their
processing, storage, bandwidth, mobility capacity, or algorithms available, which may make them less
flexible to adapt to a changing physical world.

For example, take a body-area network that is composed of sensors of blood pressure, heart rate,
and blood-oxygen level that continuously measures these parameters every 3 min, and that in case
of any abnormal level in these parameters, it activates an alarm to the user through a bracelet that vi-
brates and shines, and sends a message to a determined personal contact and to the family doctor, so
that together (the user and the doctor) they can make a decision on the course of action to follow. If
this CPS is faced with a serious event in which blood-oxygen levels begin to fall dangerously, it may
be useful to increase the frequency of blood-oxygen samples from 3 min to 30 s. However, although
memory and processing capacities available in the described CPS and in regular scenarios is normally
sufficient, it may be exceeded, and, if so, a dynamic scaling would be needed to addresses these new
requirements.

Another example of CPS that can be exceeded under certain circumstances is found in a domotic
system, which is adapted to meet a specific housing requirement, and the habits of the inhabitants of
the same requirement. When the inhabitants decide to move to a new home, the CPS remains anchored
to the previous home. However, it would be desirable that when arriving at the new house (which also
has a domotic system), their preferences and settings would be transferred with little human interven-
tion and would not require a manual configuration of the system or a period of adaptation to the new
inhabitants.

For cases like these in which CPS needs to adapt to the changing physical world and expand its
capabilities dynamically, this chapter offers an architecture and some use-cases for it.

7.2 RELATED WORK
7.2.1 VIRTUAL MACHINES AND MICRO VIRTUAL MACHINES
Virtual machines (VM) are an important tool that has been used along with cloud computing and has
allowed great adaptability and security to the systems deployed in them. Similarly, for a cloud-assisted
CPS they are critical because they enable scaling within the infrastructures that contain them, allowing
the CPS to increase its capabilities and services.

A virtual machine simulates the hardware resources of a device, defining in this way the real hard-
ware resources to which the VM will have access. This is important because it allows multiple VMs
to share the same real device and enables that their established resource limitation can be dynamically
modified, provided that they do not exceed the actual capabilities of the hardware on which they are
deployed [9].

Therefore, by simulating hardware resources, a VM can be treated like a real machine; the VM
hardware may differ from the real hardware, but what really counts is the place where it is being de-
ployed. This brings the advantage that the virtual machine can be transported and deployed in different
devices, while still maintaining its integrity and functionality.

1297.2 RELATED WORK

Similarly, a virtual machine defines a security domain, which is isolated from other virtual ma-
chines running on a single device, as if it were a completely separate machine. This fact, coupled with
the hardware independence, makes virtual machines ideal for cases requiring backup, mobility, rapid
deployment of infrastructure, and high fault-tolerance.

Within the VMs, an operating system that interacts with the simulated hardware is installed, allow-
ing its use by applications and services. It is necessary to specify that the virtual machines be deployed
on an ecosystem that includes the VM manager or hypervisor, the actual hardware, and the operating
system of the actual device (Fig. 7.1) [10].

For their part, micro virtual machines (microVM) are a subset of the VM in which simulated hard-
ware resources are limited and the operating system installed on them is very light. In this case, a mi-
croVM is considered a synonym for the micro instances of performance with bursts of the Amazon EC2
service (t2.micro), which have about 1 GB of RAM and a vCPU with two different CPU allocation lev-
els: background level and max level. Background level allocation provides a consistent baseline CPU
resource allocation. Max level allocation is allowed for short periods of time to accommodate short
spikes in CPU requirements. This means that the micro instance may be feasible for low-throughput
applications with occasional workload spikes [11].

These microVM allow for simulating limited devices such as RaspberryPi B+ (512 MB of RAM
and ARM processor at 700 MHz), which are ideal for the deployment of small computing devices,
near the user, that take care of storing and processing information interactively while maintaining a
low cost.

Finally, it is important to know that a microVM must have an operating system installed that is
quite contained and that operates efficiently under these restrictions. One of the most important in the
last year is Snappy Ubuntu Core, which is a GNU/Linux distribution with transactional updates based
on Ubuntu Core.

7.2.2 OTHER ARCHITECTURES
There are proposals of architectures that are related to the one discussed in this chapter, either because
they are complementary, specific use-cases, or alternative options. Within these architectures three
stand out:

• Cloud4Sens is a cloud-oriented solution to integrate heterogeneous monitoring infrastructures
(MI) into the cloud, offering services based on the datacentric and device-centric models [12]

FIGURE 7.1 Virtual Machine Architecture

130 CHAPTER 7 MICRO VIRTUAL MACHINES

• Californium is a system architecture for scalable IoT cloud services based on the Constrained
Application Protocol (CoAP), which is primarily designed for systems of tiny, low-cost, resource-
constrained IoT devices [13].

• Cloud-assisted remote sensing (CARS) presents a four-layer architecture (Fog, Stratus,
Altocumulus, and Cirrus), and describes the potentials and capabilities of remote sensing when
empowered via cloud services to enable distributed sensory-data collection, global resource and
data sharing, remote and real-time data access, elastic resource provisioning and scaling, and pay-
as-you-go pricing models [14].

Although these proposals exist, at this time there is no standard architecture that is accepted within
the global technological-development frame. One of the most promising initiatives to achieve a shared
architecture for the IoT is currently under development by The Alliance for Internet of Things Innova-
tion (www.aioti.eu). An adaptation of the proposal that is part of this chapter has been taken to this
institution as a contribution to the debate that seeks consensus in this emerging area of knowledge.

7.3 ARCHITECTURE FOR DEPLOYING CPS IN THE CLOUD
AND THE EXPANSION OF THE IoT
Architectures set the pace at the time of designing a system; they are a starting point that allows adapta-
tions to use cases and they present a common language in which to debate the advantages and disad-
vantages of a development. Therefore, proposing an architecture is often the first step in consolidating
knowledge in information and communications technologies.

In this way, taking as a reference the actual development in sensors/actuators networks and joining
it with new cloud-computation trends, an architectural proposal is made for CPS that it is considered
will respond to the cases in which the CPS must dynamically widen its capacities (Fig. 7.2).

Sensors/actuators networks, whose goal is to capture events and interfere in a physical way with
reality, compose the closest level to the physical world. In this first level, physical phenomena are
monitored and described by a standard language, and are shared by employing well-defined interfaces.
Likewise, action signals over the real environment are transmitted following the same scheme.

It has to be taken into account that this level may contain in itself other CPSs. This is the case in
which robots, drones, or smartphones employ their sensors/actuators, along with their processing and
storage capacity, to interact with the physical world.

The second level of the proposed architecture is composed of information processing and storage
units that have the possibility of scaling, on demand, the resources that a specific CPS deployed in it
has. These units contain the CPS’s virtual instances and provide a basic set of services to resize these
instances according to specific needs.

These processing and storage units are called “fog sites,” and constitute a simile of “cloud sites”
in cloud computation, but to a lower scale, thus conforming to an implementation of what is actually
known as a fog computational level.

Additionally, to complete this level’s function, apart from the services linked to the resource ad-
ministration, it must count with services such as performance monitoring, event-driven alerts, account
use, backup, and security. These additional services allow for an adequate administration of this fog
computational layer.

http://www.aioti.eu/

1317.3 AARCHITECTURE FOR DEPLOYING CPS

Therefore, for this level to be effective, it must be linked with the first level through wideband con-
nections, and with good-quality service; this second level is generally located physically close to the
first-level devices, and offers great interactivity and fast response.

In the second level, the concept of CPS virtual instance has to be explored. A CPS virtual instance
contains all information storage and processing logic, along with the necessary procedures to interact
with the physical world; it must be self-contained, that is, it must count with all necessary dependencies
to function independently of the deployment location and other virtual instances.

In this way, a CPS virtual instance, along with the sensors/actuators networks and other first-level
CPSs of the architecture associated with it, conform to a traditional CPS, with the advantage of being
able to attend to the changing reality in which it operates.

For its part, the third level of the proposed architecture augments almost indefinitely the second-
level capacities, bringing the resource administration services along with the complementary services
to all CPS virtual instances where the fog site is insufficient.

This accommodates three forms of interaction between the second and third level. The first one oc-
curs in the case where horizontal scaling in the fog site reaches its limit, and therefore the CPS virtual
instance should scale up to a cloud site to prevent the interruption of the work in progress. The second
form of interaction occurs in the form of distributed computing, in which certain processing or storage
activities that require large resources are performed in the third level, while the daily activities take
place on the second level. Finally, the third form of interaction between the second and third level is
when the cloud site serves as a gateway for CPS virtual instances, for example, as a restoration of a

FIGURE 7.2 Proposing Layered CPS Architecture

132 CHAPTER 7 MICRO VIRTUAL MACHINES

backup, a migration of the virtual instance to another fog site, or redeployment based on a pre-existing
instance.

Finally, to understand the architecture, it is necessary to know the role of complementary services
such as catalog, performance monitoring, event-driven alerts, backup, and security. The catalog allows
for the listing of the types of services that a fog site or a cloud site provides, and what virtual instances
are deployed in them. Performance monitoring allows us to know the resources that each CPS virtual
instance uses, to manage a history of this information and to define thresholds to increase the allocated
resources. Similarly, the alerts service, based on events, records and sends alerts that have been deter-
mined to be relevant to the use case. Also, backup allows backing up and restoring virtual instances as
needed. Lastly, security includes specific permissions on a virtual instance, the services to which they
can access, the use of encryption in communications, and the accessing of accounts of people who can
configure the instance.

This proposed architecture for the CPS is applicable to the IoT, where the first level is composed
in a manner analogous to the one presented previously, whereas the second level would provide “intel-
ligence” through virtual instances, with the advantages of using fog computation. For its part, the third
level would provide that extra layer to scale almost indefinitely, as expressed in the presentation of the
architecture.

Applying the architecture here that is proposed for cloud-assisted CPS, complex use-cases can be
faced that require interconnection with external systems, distributed processing/storage, context aware-
ness, big/small data, data mining, high fault-tolerance, mobility, or interconnection with heterogeneous
systems. Later in the chapter, some use-cases that illustrate the use of the architecture, as well as forms
of interaction between the proposed second and third levels, are analyzed.

7.4 EXTENDING THE POSSIBILITIES OF THE IoT BY CLOUD COMPUTING
The proposed architecture applied to the IoT provides the ability to adapt to a constantly changing
world so that it can accommodate a large number of scenarios, including those in which it would be
necessary to have computing capabilities on demand, information backup, mobility, distribution of
information, and context awareness.

Thus, the adaptive computing capacity on demand covers the adjustment in the amount of process-
ing memory (RAM), as in the long-term storage memory (hard drive), in addition to the adjustment in
the number of processors to use, the usage time of each processor, and the available bandwidth.

Likewise, it can be considered that the computing capacity on demand includes using algorithms
that are highly demanding of resources, those that are useful only in very specific moments in the
lifecycle of the system, or those that require increasing the number of routines to run only at specific
times.

Also in this category, it can consider access to massive information present within the system or in
external databases, and the processing of this information to either analyze or to generate consolidated
or dynamic reports in which people can interact. Finally, adaptation on demand of the computing capa-
bilities includes the possibility to interconnect systems without degrading performance or compromis-
ing the security of the same.

Meanwhile, data backup includes backup and restore processes, in addition to the possibility of a
rapid deployment from other stored instances.

1337.5 MICRO VIRTUAL MACHINES

In the same way, mobility refers to the ability to migrate a virtual instance of a fog/cloud site-
provider to another, without losing the information and the processes related to the deployment of IoT.
Another possibility is to migrate the instance between “fog sites” in order to ensure the best connection
performance.

Furthermore, the distribution of information is vital within the IoT. In this, data can be shared be-
tween CPS virtual instances that are part of the IoT, or between client/server relations between CPSs
belonging to the IoT.

Finally, context awareness allows for the adaptation of the number of sensors/actuators that are
used simultaneously according to an activity, for modifying the accuracy or the format in which data
is collected from sensors and stored, or for employing artificial intelligence to make decisions without
involving people, thus creating intelligent and adaptable environments.

7.5 MICRO VIRTUAL MACHINES WITH THE SENSOR OBSERVATION
SERVICE, THE PATH BETWEEN SMART OBJECTS AND CPS
7.5.1 VIRTUAL MACHINES AND SENSOR OBSERVATION SERVICE
A virtual machine is an abstraction of a computer in which, through software, specific hardware re-
sources are simulated so that it can be used as if it were a real device, allowing for the installation of an
operating system and programs within it.

Usually, virtual machines are used to provide Infrastructure as a Service (IaaS), allowing for several
simulated device configurations to be accommodated in a server’s farm. They are also widely used to
test software without being influenced by other processes. There are many other uses that are given
to virtual machines, and the one proposed in this chapter is one of them, which is based on the use of
microVMs.

A microVM is a program that simulates a device with limited resources, which provides an isolated
domain between the microVM and the host operating system, and between the microVM and other mi-
croVMs from the same host. It differs from a conventional virtual machine because of the few resources
that it needs to operate, and therefore in the initial limitations with which it is executed.

Although a microVM demands more resources than a process within a conventional operating sys-
tem, this approach offers some advantages that would be difficult to attain by running a process.

These advantages include a self-contained microVM that can be copied and transferred without
losing the integrity of processes or information. This also provides complete isolation so that it does
not affect other instances. It is more fault tolerant and improves security. It is also very versatile
by allowing different processes to deploy within it, giving greater freedom to implement diverse
technologies.

Within the proposed architecture, microVMs fit perfectly within the concept of virtual instance and
its use within the cloud/fog sites, with microVMs being a versatile and immediate solution to imple-
ment the concepts and benefits of the presented architecture.

One of the benefits of employing a microVM as a virtual instance is the possibility of using low-
resource equipment as a “fog site” in the proposed second level, and that an instance of a microVM
inhabits it. Using low-cost equipment enables that this second level is very close to where it interacts
with the physical world, thus improving response time and overall system performance.

134 CHAPTER 7 MICRO VIRTUAL MACHINES

In addition, by using the microVM in this way, it is possible to make fast migrations and deploy-
ments of virtual instances within a CPS because they are lightweight enough for transmission over the
network while maintaining their integrity.

Similarly, when virtual instances are microVMs, the classic mechanisms of virtual machines can be
used for vertical and horizontal scaling.

For its part, the Sensor Observation Service (SOS) is the intermediary between the client and pres-
ent and past data generated by a sensor, in addition to the metadata associated with these [15]. It is a
standard created by the Open Geospatial Consortium (OGC) and released in order to be exploited by
the large consortium of companies that make up the OGC. SOS has taken several years to develop, and
its development has been based on Web standards such as SOAP, WSDL, and XML.

The SOS forms part of the Sensor Web Enablement (SWE) framework. The SWE is a set of stan-
dards that allow exploitation of sensors and sets of sensors connected to a communications network.
The group of SWE specifications covers sensors, related data models, and services that offer accessibil-
ity and control over the Web. The SWE architecture is composed of two main models: the information
model and the service model (Fig. 7.3) [16]. The conceptual models refer to transducers, processes,
systems, and observations.

The information model describes the conceptual models and encodings, whereas the service mod-
el specifies related services, grouped into three information models and four service implementation
specifications. The three information models are: Observations & Measurements Schema (O&M)
[17,18], Sensor Model Language (SensorML) [19], and Transducer Markup Language (TransducerML
or TML) [20]. The four service-implementation specifications are: SOS [21], Sensor Planning Service
(SPS) [22], Sensor Alert Service (SAS) [23], and Web Notification Services (WNS) [24].

As can be seen, SOS standard specification is complex and requires robust equipment for deploy-
ment. However, in many cases it can exceed the needs of the deployed system. Thus, in some cases it is
necessary to have a lighter SOS that provides the basic capabilities according to the standard, but that

FIGURE 7.3 Sensor Web Enablement Components

1357.6 IoT ARCHITECTURE FOR SELECTED USE CASES

can be deployed in low-resource equipment and facilitates the deployment near the sensor networks,
due to the low cost that it can carry.

An SOS designed like this serves as a distributed database with which interaction can be made
through well-defined interfaces, and it can transmit messages with standard structures while consuming
little computational resources.

Using a light SOS (SOSLite) or a set of these, aggregations of data can be made to generate consoli-
dated analysis for use in decision-making, whether automated or mediated by humans.

If the proposed architecture is taken into account and we want to make a real deployment of this for
a CPS, the microVM and SOSLite can be taken as key technological components to carry it out. Be-
ing in the first instance the right combination for sensor networks that rely on fog computing, which is
composed of several virtual instances on microVMs, and that are deployed in low-resource “fog sites,”
each microVM offers a SOSLite service for the interaction of data from sensors and between instances.

Using microVM and SOSLite allows us to take advantage of the proposed architecture by defining
an autonomous and self-contained unit, with a security domain and with well-defined interfaces, to
communicate with. This combination presents an excellent example of how a virtual instance can be
made in these systems.

7.5.2 IMPLEMENTATION
In order to implement the selected use cases, a complete implementation of a SOSLite has been con-
ducted, and Snappy Ubuntu Core was used as the operating system (a GNU/Linux distribution for the
IoT). For the “fog sites” Raspberry Pi B+ was used, and for the “cloud sites” Amazon’s Elastic Com-
pute Cloud (EC2) service was used.

The SOSLite implementation was made in PHP, as database mongoDB is used, a NoSQL database,
and NGINX is used as a server. The choice of PHP as development language is based on the proximity
of the SOS specification with Web standards and the good implementation that PHP makes of them.
For its part, using MongoDB facilitates data storage because its nature is minimally relational, but it
has high rates of queries and storage operations. Finally, the use of NGINX is based on the nature of
the data transmitted on these systems and that it is event-driven.

Thus, in each Raspberry Pi, Snappy Ubuntu Core is installed as the operating system, and on it the
NGINX and MongoDB services are deployed. Additionally, the PHP scripts are published, in which
the SOSLite functionalities are coded.

Meanwhile in Amazon’s Elastic Compute Cloud (EC2), virtual machines limited to the specifications
close to a Raspberry Pi are configured, and a similar configuration of the hardware is installed in each.

With a deployment of these characteristics, significant use cases can be modeled, with which the
usefulness and scope of the proposed architecture is validated, along with its importance to define the
path between smart objects and CPS.

7.6 IoT ARCHITECTURE FOR SELECTED USE CASES
To determine the usefulness of the proposed architecture and the use of microVMs for CPSs on the
cloud, three use-cases are illustrated. The first one is linked to eHealth, the second one to precision
agriculture, and the last one to domotics.

136 CHAPTER 7 MICRO VIRTUAL MACHINES

7.6.1 eHEALTH
One of the greatest concerns of health entities is elderly care, so that they may have a healthy and fulfill-
ing life that eliminates any limitation and/or dependency. With this objective, prevention is one of the
paths that have been shown to be most efficient, and within this, automatic monitoring is the area where
technology can make a difference.

Therefore, a CPS that responds to the automatic monitoring needs of the elderly is a proposal in
accord with the actual technological advances, where it can be counted on for connectivity almost any-
where, and at a time where physical scanning devices are more affordable each day.

In this way, a system is proposed that integrates body-area sensors that evaluate the person’s vital
constants, and both home-comfort and city ambient-monitoring sensors, along with programs for food
and medicine intake, physical activity and virtual interaction in social networks, in addition to giving
support to the interconnection with emergency services and providing sanitary feedback with health
specialists.

The architecture for this cloud-assisted CPS (Fig. 7.4) presents three levels (as in the proposed ref-
erence architecture). The first one is composed of the body-sensors network that evaluates parameters
relative to the functioning of the human body (cardiac rhythm, blood oxygen, amount of steps taken
during the day, etc.). Also included in this level are the home sensors that measure air quality, ambient
temperature and movement, and also the city sensors that measure air quality, weather, noise, and traf-
fic. For its part, the second level presents equipment that is economical and resource-limited, deployed
in the person’s home network, and whose function is to store and analyze the information provided by
both the personal-area and home sensors, at the same time that it queries the public information given
to it by the city sensors. Finally, the third level provides additional intelligence by making analyses and

FIGURE 7.4 Layered eHealth CPS Architecture

1377.6 IoT ARCHITECTURE FOR SELECTED USE CASES

predictions, and it is linked to the emergency services and sanitary feedback that the elderly person is
affiliated with.

In this way, the first level handles the recording and transmission of interest-data, the second level
stores, shares, and analyzes collected data, while the third level provides interconnection with the other
systems and facilitates the generation of statistics and personal and group predictions. All levels are
independent of the hardware used, and allow the interconnection of heterogeneous systems by using
the combination of MicroVM/SOSLite.

Entering in details, personal sensors can be grouped in two categories: continuous-use sensors
and occasional-use sensors. Included in continuous-use sensors are wrist bracelets/clocks that register
activity, and skin-tattooed sensors that automatically register the measurements made. For their part,
occasional-use sensors may require the manual input of data through a mobile or a web app. All data
registered by these sensors is stored in the user’s personal network, in a resource-limited device that
plays the part of a “fog site” and holds a microVM.

In the same way, home sensors measure air quality, ambient temperature, and movement within
the enclosure, with the objective of analyzing this data along with the personal-sensor data, to identify
whether any of the ambient factors have directly influenced the person’s health. With this same objec-
tive, the city sensors are queried and its data is analyzed (air quality, weather, noise, and traffic). So,
the data registered by the sensors in the microVM and deployed in the user’s “fog site” are analyzed to
determine hazardous conditions for the person, and/or to relate personal or ambient conditions to any
specific ailment.

One of the most interesting factors to determine the health-risk agents in older people is their vir-
tual activity in social networks, to detect personal interactions and the amount of activities in which
the person has been involved. The analysis of this data is one of the factors of interconnection with
other systems where the third level is widely used. This analysis does not determine immediate risk,
and therefore does not require a real-time communication. However, it is an operation that can con-
sume significant resources, and, therefore, the ideal is not to occupy the limited resources of the user’s
hardware.

Finally, using the cloud for the interconnection with other systems enables sending alarms and
consolidated data to the health provider to which the person is affiliated. So that when he or she
makes routine visits to his or her medical doctor, the doctor can evaluate the patient’s behavior. Al-
ternatively, in case of an emergency, a notification can be sent to the medical team that will attend to
this emergency.

7.6.2 PRECISION AGRICULTURE
Precision Agriculture (PA) has been more relevant in the agrarian sector because technology enables
the optimization of resource use in the productive parcels. It is in an advanced development phase, and
some producers have started to implement PA in their terrains, and have obtained promising results,
managing to return the investment necessary for its implementation.

PA systems are an excellent case study of the implementation of CPS, and, in this case, of how
cloud computation can help enhance its reach.

Thus, the activities linked to PA include: identification and localization of crops, weeds, and ma-
chinery; performance monitoring; variable dozing of fertilizers, herbicides, insecticides, and fungi-
cides; planting monitoring; and ground classification and mapping.

138 CHAPTER 7 MICRO VIRTUAL MACHINES

To achieve the fulfillment of these activities, usually information is gathered through satellites,
drones, or sensors/actuators, either mounted on agricultural machinery (fertilizer, combiner, cutter,
fumigator, seeder) or on saddle (cropper, ripper, subsoiler, etc.).

For this case, the proposed architecture is adopted (Fig. 7.5) so that in the first-level environmental
sensors network, drones and sensors/actuators either mounted on agricultural machinery or on saddles
are found. The second level is composed of several microVMs associated with the environmental
sensors network, with each drone, and with every machine used in the parcel. Finally, the third level
groups the diversity of data coming from the second level, and provides a unified vision through the
Geographic Information System (GIS).

Entering in details, environmental sensors measure: temperature, rainfall, wind velocity, air humid-
ity, ground humidity, and ground PH, among other factors. They are distributed in the property as small
meteorological stations and sensors. All sensors report their data to a centralized microVM.

For their part, drones are equipped with wide-spectrum cameras, which allow the monitoring of
crop-development parameters and high-resolution cameras to build topographic information. They are
also accompanied by positioning sensors to determine the location of the data gathered. Each drone
includes its own microVM, where it stores data and shares it with the third level.

In the same way, the network of sensors/actuators mounted on saddles or agricultural machinery is
responsible for the measuring of parameters such as the production in a determined area, and for opera-
tions such as determining the optimal amount of fertilizer to apply in an area. Each of these machines
carries equipment where the microVM is deployed, and where parameters such as performance rates or
weed presence can be calculated. Later, this information is centralized in the third level.

The cloud level, in this use case, centralizes the information from diverse microVMs deployed in
the whole parcel, and allows its visualization through the GIS. In addition to this, through computa-
tional analysis, it gives support to the decision-making process and it integrates external systems to
make projections and estimations. Therefore, this third level brings in the integration, interconnection,
and visualization of data in real time, whether it be historical or projected for a property.

FIGURE 7.5 Layered PA CPS Architecture

1397.6 IoT ARCHITECTURE FOR SELECTED USE CASES

Finally, as it has been mentioned, in the third level, interconnections can be made with external sys-
tems such as the local weather system, where historical and predicted information about the weather in
the area can be found, or with satellite systems such as those provided by ESA/NASA, where ground
data at a global level can be found.

7.6.3 DOMOTIC
A cyber-physical domotic system is responsible for the automation of a home to achieve greater se-
curity and electrical efficiency, at the same time that it enhances comfort and is able to respond to
emergency conditions. It is composed of sensors/actuators and a local system that centralizes and coor-
dinates all actions in the home. By being supported in a cloud system, the interconnection possibilities
with other systems are extended, and the capacities of the system to provide greater computational
resources are enhanced.

In this case, a system arises (Fig. 7.6) in which the first level contains all home sensors/actuators,
and the second level contains a virtual instance in which all data is registered and decisions are made
about which actions to take. In addition, the second level utilizes small data to achieve optimization of
energy costs and automatic alarm activation. The third level, in turn, provides the interconnection with
the systems in the building where the home is located, and with the systems in the city, such as fireman
alerts in case of fire.

In depth, it can be noted that the security subsystem is composed of movement sensors, door- and
window-opening sensors, alarms, cameras, and automatic locks. Sensors register data and send it to the
microVM, where it is decided whether alarms should be activated or alerts should be sent; in addition,
historical data is analyzed and it is established whether automatic locks should be activated.

Another subsystem involved is the one responsible for people’s comfort, in which it is very common
to monitor humidity and temperature, thus regulating air conditioning or the home’s cross-ventilation

FIGURE 7.6 Layered Domotic CPS Architecture

140 CHAPTER 7 MICRO VIRTUAL MACHINES

system; also air-quality measuring systems can be included. Just like in the security subsystem, data
and actions are centralized in the second-level microVM.

For its part, the entertainment subsystem controls lights and ambient sound, and personalizes music
playlists and videos according to user preference. In this case, users can be identified through their
smartphones, and profiles can be created for everyone so that preferences are recorded, resulting in
more accurate recommendations. This “intelligence” job is made in the local device.

Similarly, the emergency system, which is responsible for sensing a water leak, a gas leak, or a fire,
could automatically close gas valves and/or activate water sprinklers. In addition, once the information
is centralized in the microVM, it can generate alarms or alerts to the home’s residents and emergency
services. An interesting point in this subsystem is that, through the cloud level, it can connect with the
emergency systems and automatically generate alerts to the authorities. For example, in case of a fire, it
can alert the area firemen and send additional information about the fire’s origin if it had been detected
according to the sensor’s sequence of activation. Another interesting aspect is that in this third level it
interconnects with the building’s emergency system, and, in case of an incident, it can give information
to the authorities regarding both the number of people and their location inside the home.

Additionally, the energy-efficiency subsystem is considered, which registers movement in a room
to activate or inactivate lights. It can automatically activate some home appliances, such as the washing
machine and dryer, when the electricity is more affordable (as in a variable-rate energy model).

Finally, the subsystems should be seen as part of a greater CPS, and that, among them, there is a
constant interaction based on the analysis of the data registered by the sensors, including the intercon-
nection with external systems through cloud computation.

7.7 FUTURE RESEARCH DIRECTIONS
Once the architecture has been proposed and the implementation is done, tests are performed in differ-
ent use-cases that validate the benefits that have been attributed to the proposed architecture. Based on
the given use-cases, laboratory and production tests are initiated in order to consolidate the system and
thoroughly evaluate the performance of the implementation.

The research area of cloud-assisted CPS is in its early stages of development. Proposing an architec-
ture is a first step, and various proposals should be tested to evaluate their performance, and the cases
where one is more effective than another. Subsequently, applications should be discovered in which
cloud-assisted CPSs have superior performance over other CPS developments. Initially, they would be
considered in cases of integration between Big Data and artificial intelligence for automated decision-
making.

7.8 CONCLUSIONS
The microVMs are a flexible and efficient approach to enable the cloud-assisted CPS, because they
allow horizontal and vertical scaling of these, thus maintaining optimum performance and enabling
interoperability between heterogeneous systems.

Meanwhile, the three-tier architecture presented in this chapter responds to a wide variety of use
cases, in which sensor networks/actuators or other CPSs can be integrated successfully with storage,

141REFERENCES

processing, and analysis systems that equip these use cases with a level of artificial intelligence and
human interaction necessary to effectively affect physical processes.

Similarly, the use cases that have been presented illustrate the wide variety of applications of tech-
nologies standardized and guided by an adaptive architecture. Future work should find new use-cases
and exhaustively test each of these, giving the architecture more substance that would consolidate it as
a reference in the deployment of cloud-assisted CPS.

Finally, technological developments corresponding to the writing of this chapter, along with the
content exposed in it, are the beginning of a wide area of research on CPSs and their application in the
real world. The steps currently taking place in this area will largely demarcate the future development
of information and communication technologies.

REFERENCES
 [1] Mack C. Fifty years of Moore’s law. IEEE Trans Semicond Manufac 2011;24(2):202–7.
 [2] Roberts LG. Beyond Moore’s law: internet growth trends. Computer 2000;33(1):117–9.
 [3] Stojmenovic I. Machine-to-machine communications with in-network data aggregation, processing, and

actuation for large-scale CPS. IEEE IoT J 2014;1(2):122–8.
 [4] Soulier P, Li D, Williams JR. A survey of language-based approaches to cyber-physical and embedded system

development. Tsinghua Sci Technol 2015;20(2):130–41.
 [5] Rajkumar R. A cyber-physical future. Proc IEEE 2012;100(Special Centennial Issue):1309–12.
 [6] Research Cluster on the Internet of Things. http://www.internet-of-things-research.eu/about_iot.htm; 2015.
 [7] Gartner. http://www.gartner.com/it-glossary/internet-of-things/; 2015.
 [8] Ashton K. RFID Journal/That ‘Internet of Things’ Thing. http://www.rfidjournal.com/articles/view?4986;

2015.
 [9] Smith JE, Nair R. The architecture of virtual machines. Computer 2005;38(5):32–8.
[10] Manzalini A, Minerva R, Callegati F, Cerroni W, Campi A. Clouds of virtual machines in edge networks.

IEEE Commun Mag 2013;51(7):63–70.
[11] Iqbal W, Dailey MN, Carrera D. Low cost quality aware multi-tier application hosting on the amazon cloud.

In: International conference on future Internet of Things and cloud (FiCloud). Barcelona, Spain, August
27–29, 2014.

[12] Fazio M, Puliafito A. Cloud4sens: a cloud-based architecture for sensor controlling and monitoring. IEEE
Commun Mag 2015;53(3):41–7.

[13] Kovatsch M, Lanter M, Shelby Z. Californium: scalable cloud services for the Internet of Things with CoAP.
In: 2014 international conference on the Internet of Things (IoT). Cambridge, UK, 2014.

[14] Abdelwahab S, Hamdaoui B, Guizani M, Rayes A. Enabling smart cloud services through remote sensing: an
Internet of Everything enabler. IEEE IoT J 2014;1(3):276–88.

[15] Botts M, Percivall G, Reed C, Davidson J. OGC® sensor web enablement: overview and high-level
architecture. Open Geospatial Consortium (OGC); 2007.

[16] Gimenez P, Molina B, Palau CE, Esteve M. Systems, man, and cybernetics (SMC). In: 2013 IEEE international
conference on SWE simulation and testing for the IoT. Manchester, UK, October 13–16, 2013.

[17] Cox S. Observations and measurements—Part 1—observation schema. Open Geospatial Consortium (OGC);
2007.

[18] Cox S. Observations and measurements—Part 2—sampling features. Open Geospatial Consortium (OGC);
2007.

[19] Na A, Priest M. Sensor observation service implementation specification. Open Geospatial Consortium
(OGC); 2006.

http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0030
http://www.internet-of-things-research.eu/about_iot.htm
http://www.gartner.com/it-glossary/internet-of-things/
http://www.rfidjournal.com/articles/view?4986
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0070

142 CHAPTER 7 MICRO VIRTUAL MACHINES

[20] Havens S. Transducer markup language implementation specification. Open Geospatial Consortium (OGC);
2006.

[21] Botts M, Robin A. Sensor model language (SensorML) implementation specification. Open Geospatial
Consortium (OGC); 2007.

[22] Simonis I, Dibner P. Sensor planning service implementation specification. Open Geospatial Consortium
(OGC); 2007.

[23] Simonis I, Echterhoff J. Sensor alert service implementation specification. Open Geospatial Consortium
(OGC); 2006.

[24] Simonis I, Wytzisk A. Web notification service. Open Geospatial Consortium (OGC); 2003.

http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00007-1/ref0095

PART

8 STREAM PROCESSING IN IoT: FOUNDATIONS, STATE-OF-THE-ART, AND FUTURE DIRECTIONS 145

9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT 163

IIIIoT DATA AND
KNOWLEDGE
MANAGEMENT

Page left intentionally blank

145

CHAPTER

STREAM PROCESSING IN
IoT: FOUNDATIONS, STATE-
OF-THE-ART, AND FUTURE
DIRECTIONS

X. Liu*, A.V. Dastjerdi*, R. Buyya*,**
*Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing

and Information Systems, The University of Melbourne, Australia; **Manjrasoft Pty Ltd, Australia

8.1 INTRODUCTION
The emergence of stream processing is driven by the incompetence of the traditional batch-processing
paradigm, when it comes to processing fast data. Nowadays, building a modern information-technology
system demands the ability of (1) processing an unprecedented volume of data using possibly distrib-
uted resources, and (2) exploring the concealed value of data within a tight time-constraint. Having
gained extensive attention from the research and industrial community, the batch-processing model
derives a series of techniques to accomplish the first goal. MapReduce, for example, is a highly scalable
and widely adopted programing model that is specialized in processing parallelization [1]. It moves
the computing power to the vicinity of data so that the enormous processing target can be divided and
conquered. Analogously, various NoSQL databases are developed alongside traditional relational da-
tabases, which allows for an extent of flexibility in data representation to handle the increasing variety
of data formats and to obtain finer control over scalability and availability [2]. By taking the horizontal
scaling ability as a principle of design, these batch-based techniques are relatively competent in terms
of handling the ever-growing data volume and increasingly complex data format. However, they are
all struggling to meet the second goal, in which the strict time-constraint has eliminated the luxury of
storing the data somewhere before executing relevant operations against it.

In this context, stream processing is proposed as the antithesis of the batch paradigm that caters
to the need of processing continuous data-volume in real-time. Both data aggregation and analysis
in the streaming model normally have a strict deadline specified, which means completing the job
beyond the deadline is not only considered as degradation of performance, but as a failure to deliver
the immediate insights that merit the effort in the first place. Guaranteeing the timeliness of aggre-
gation and analysis is a nontrivial task, the streaming paradigm has to continuously aggregate the
target-data elements right after its generation to form possible endless streams over the network.
When it comes to the data- processing phase, these streams flow through a computation topology
where continuous queries (ie, long-standing queries that usually operate over time and buffer win-
dows) are installed to be processed in a record-by-record manner. In contrast to the batch model
where data are persisted for future analysis, the streaming model essentially deals with the dynamic

8

146 CHAPTER 8 STREAM PROCESSING IN IoT

data-streams that had recently come in, and it incrementally updates the query results. Those data
that have passed the processing system cannot be easily retrieved, resulting in an implicit trade-off
between the processing accuracy and the real-time promise.

Stream processing has always been an integral part of Internet of Things (IoT) applications, as it
offers a scalable, highly available, and fault-tolerant solution to handle a high volume of data in mo-
tion. As shown in Fig. 8.1, the architecture of IoT outlines the importance of stream processing and
how it is connected with the rest of the system. From the perspective of an application developer,
stream processing mainly works as a connecting bridge between the application layer and the service
and middleware layer, which allows the upper logic to make appropriate use of the underlying general-
purpose services and infrastructures. For example, the streaming paradigm may decide that only the
synopsis of incoming data needs to be preserved in the storage system so that no external database
is required, or the runtime framework that conducts the data analytics needs be placed in a cloud envi-
ronment to take advantage of its elasticity feature. In addition to that, the stream-processing paradigm
also has a significant impact on the organization of the network layer and the device layer to keep that
real-time promise. As a matter of fact, the major part of latency between the data generation and result
delivery lies in the data-collection phase rather the processing phase. Therefore, it is essential for an
IoT application to properly select the substructures that suit its particular time-sensitivity requirement.

On the other hand, the applications from the IoT domain have always been the driving force that
motivates the development and adoption of the stream-processing paradigm. The primary cause is that

FIGURE 8.1 Stream Processing in the System Architecture of IoT

1478.2 THE FOUNDATIONS OF STREAM PROCESSING IN IoT

the way of data generation has become increasingly active in the emerging IoT applications. Previously,
data in the conventional scenarios resulted from passive reactions to real-world events or user queries, but
nowadays IoT data are mostly automatically generated by large-scale sensor networks for monitoring and
decision-making purposes. As a consequence, not only has the amount of data being generated soared,
but also the places of data production have become much more geographically dispersed than before. In
some cases, leveraging the stream-processing model to handle data in motion is the only viable option.

Besides, the value of IoT data has also become increasingly sparse and deeper hidden, which results
in a significant change in the relevant processing techniques. Prior to the IoT era, we had intended to
collect comparatively a small fraction of data with high precision to quickly perform analysis and get
results in time. However, today the data format used by IoT application is known to be heterogeneous,
unstructured, and fine-grained. This is a result of numerous factors, including the advancement of
mobile and internet technologies, popularity of social media, and widespread deployment of sensors
and actuators in a mutable environment. For example, to make the city more desirable and liveable, the
smart-city program installed in Rio de Janeiro, Brazil in 2010 has set up an operations center to analyze
real-time data 24/7 from 30 municipal institutions. In this program, raw information is collected from
various data sources to support the central surveillance and analytics at a single hub, including live
video from traffic and public transport, position information from Google Maps, and real-time alarms
from the sensor networks on utility and emergency-service readouts [3]. Such an explosion on data
dimensionality has made it impossible to meaningfully correlate the small datasets from these sources,
regardless of how precise they are. Revealing the true value of IoT data therefore largely depends on the
processing of a massive amount of heterogeneous data, where stream processing comes up as a handy
tool, as it provides the required availability, high throughput, and real-time support.

This chapter aims to provide a discussion on the concept and general architecture of a stream-
processing system in the context of IoT, with a focus on comparing various platforms that are available
to process continuous logic according to specific application needs. To this end, we first analyze the
characteristics of stream data, and then we present a general stream-processing architecture, which is
determined by the associated processing demands of each characteristic. Finally, this chapter concludes
with an outlook that explores the future directions and trending topics regarding the development of
stream processing in the IoT domain.

8.2 THE FOUNDATIONS OF STREAM PROCESSING IN IoT
There is a considerable ambiguity related to the terms “stream processing” and “stream analytics,” as they
have been simultaneously used by a diverse range of research communities. For example, stream processing
in the context of parallel processing refers to a computer programming paradigm that allows applications
to better exploit computation parallelism using a combination of heterogeneous resources, such as CPU,
GPU, or field-programmable gate arrays (FPGAs) [4]. On the other hand, stream processing in the field of
connection-oriented communications means to transmit and interpret digitally encoded coherent signals in
order to convey data packets for the higher-level network abstraction [5]. In the jargon of the database com-
munity, “processing stream” refers to a particular ability owned by active DBMS to handle external updates
with reactive behaviors, according to the predefined Event Condition Action (ECA) rules [6]. Nevertheless,
these definitions of stream are either overly limited or not directly related to our topic, which is the process-
ing of either distributed events or data items for real-time IoT applications. In order to clarify the scope of
this chapter, we first define the terms “stream” and “stream processing” in the IoT context.

148 CHAPTER 8 STREAM PROCESSING IN IoT

8.2.1 STREAM
A stream is a sequence of data elements ordered by time. The structure of a stream could consist of
discrete signals, event logs, or any combination of time-series data, but the way of recovering data from
one to another must be append-only, resembling a conveyor belt that continuously carries data elements
through a processing pipeline. In terms of representation, a data stream has an explicit timestamp as-
sociated with each element, which serves as a measurement of data order. Based on this, we formally
define the denotation of stream in the context of IoT, as a Data Element–Time pair (s, ∆), where

1. s is a sequence of data elements that are made available to the processing system over time. A
data element may consist of several attributes, but it is normally atomic, as these attributes are
tightly coupled with one another for logical consistency.

 Typical element types include immutable data tuples of the same or similar category, as
well as heterogeneous events that come from a variety of sources. Depending on the specific
application scenario, data elements can be either regularly generated by sensor networks that have
monitoring intervals, or randomly produced by real-world events such as user clicks on a website,
updates to a particular database table, and system logs produced by Internet services.

2. ∆ is a sequence of a timestamp that denotes the sequence of data elements. Since heterogeneous
elements could be aggregated into a single stream out-of-order due to the uncertainty of
distributed data-collection and transmission procedures, the use of a timestamp is necessary to
reconstruct the logic sequence for the following analytics. In addition, timestamps can be also
used to evaluate the real-time property of a stream-processing system, by checking on whether the
results have been presented on time.

 Normally, timestamps can be implemented in two forms: (1) as a string of absolute time-
values, which consumes more resources to be processed, but makes it easier for developers to
devise joint algorithms on separate streams; or (2) as a sequence of positive real-time intervals
that only record the relative order of data elements in the same stream. The latter form alleviates
the stress of the network by reducing the size of the timestamp, but it is harder to reorder the
sequence of events across different streams with only in-stream intervals.

8.2.2 STREAM PROCESSING
Stream processing is a one-pass data-processing paradigm that always keeps the data in motion to
achieve low processing-latency. As a higher abstraction of messaging systems, stream processing sup-
ports not only the message aggregation and delivery, but also is capable of performing real-time asyn-
chronous computation while passing along the information. The most important feature of the stream-
ing paradigm is that it does not have access to all data. By contrast, it normally adopts the one-at-a-time
processing model, which applies standing queries or established rules to data streams in order to get
immediate results upon their arrival.

All of the computation in this paradigm is handled by the continuously dedicated logic-processing
system, which is a scalable, highly available, and fault-tolerant architecture that provides system-
level integration of a continuous data stream. As a consequence of the timeliness requirement, com-
putations for analytics and pattern recognition should be relatively simple and generally independent,
and it is common to utilize distributed-commodity machines to achieve high throughput with only
sub-second latency.

1498.2 THE FOUNDATIONS OF STREAM PROCESSING IN IoT

However, there is another subclass of stream-processing systems that follows the microbatch
model. Compared to the aforementioned one-at-a-time model, in which it is difficult to maintain the
processing state and guarantee the high-level fault-tolerance efficiently, the microbatch model excels in
controllability as a hybrid approach, combining a one-pass streaming pipeline with the data batches of
very small size. It greatly eases the implementation of windowing and stateful computation, but at the
cost of higher processing-latency. Although such a model is called microbatch, we still consider it to
be a derived form of stream processing, as long as the target data remains constantly on the move while
it is being processed. In order to better illustrate the basic idea of stream processing, we compare it to
the well-known batch paradigm in Table 8.1. Although these two paradigms share some similarities in
terms of the objective and functionality of processing, they differ significantly in the way that data is
organized and processed.

When it comes to the application of stream processing, we have identified two utterly different types
of use cases. The first one is Data Stream Management. The system falling in this category is normally
called Data Stream Management System (DSMS), analogous to the traditional DBMS, whose goal is also
to manipulate a huge amount of available data to constitute data synopsis, schema, or some other math-
ematical or statistical model that is easy to understand and interpret. Specifically, data streams within
the DSMS are joined, filtered, and transformed according to specific application logic with the use of
continuous and long-standing queries. In the early days of DSMS, an application developer could easily
set up those queries using SQL-like declarative language, whereas the real implementation was left to be
transparently handled by the DSMS. However, since the throughput requirement of stream processing
has soared during the recent decade, and the corresponding DSMS has become increasingly distributed,
sticking to such a declarative model makes it painful to horizontally scale, and even harder to maintain
the required availability and fault-tolerance ability. Therefore, the state-of-art DSMS mostly adopts the
imperative way to implement long-time queries, by using the provided programming API, where a seg-
ment of code is performed upon the arrival of each incoming data element to compose the whole-analysis
logic. Additionally, the responsibility of managing the processing state now rests on the shoulders of the
application developers, resulting in a nontrivial effort to debug the application, as well as tune the perfor-
mance on a specific platform. A typical use-case of DSMS includes face recognition from a continuous
video stream, and the calculation of user preference according to his or her click history.

Table 8.1 Comparison of the Stream Model and the Batch Model

Aspects Stream Model Batch Model

Management target Transient streams Persistent data batch and relations

Amount of data Possibly infinite Finite

Processing model In-memory processing Store-then-process and in-memory processing

Query model Continuous and standing-by query One-time query

Access model Sequential access Random access

Result repeatability Nearly impossible Easy

Pattern of result update Incremental update Global update

Focus of processing Low latency and high throughput High accuracy and comprehensiveness

150 CHAPTER 8 STREAM PROCESSING IN IoT

The other use case is called Complex Event Processing (CEP), which is essentially tracking and
processing streams of raw events in order to derive significant events and identify meaningful insights
from them. There are several techniques being used to achieve that goal. The most notable one is to im-
plement and configure the processing logic as a set of inferring rules in the knowledgebase so that they
could be used in the decision-making process of identifying complex patterns. To define and preserve
the mutual relationship of events, various types of event-processing languages have been proposed to
correlate the seemingly independent events with the relationships such as causality, membership, and
timing. Besides, CEP systems normally require that the maintenance of state and the preservation of
event relationship be provided at the system level rather than the application level, which makes the
microbatch model a preferable option compared to the one-at-a-time model.

In contrast to the primary goal of DSMS, which performs stream analytics at a geographically
concentrated place, the major concern of CEP is to infer the needed insight from the vast volume of
raw events to stream as fast as possible. Therefore, the computation complexity of CEP logic is usually
lower than that of DSMS, and it is preferable to make the rule-matching process take place somewhere
near the data generation.

For the sake of clarity, we summarize the major differences between DSMS and CEP in Table 8.2.
However, the boundary of CEP and DSMS is not clearly demarcated in terms of the implementa-

tion. A CEP system can be built on top of DSMS by implementing event rules with query languages,
whereas the functionality of DSMS can be provided by certain CEP systems that have analytic logic
integrated into the rule-based knowledgebase. Actually, there is an ongoing trend that a single stream-
processing platform is able to serve both the use cases without requiring too much modification. For
example, Apache Storm, a prevalent real-time computation framework that receives a lot of attention
recently, has the one-at-a-time model at its core, which makes it an ideal platform for data-stream

Table 8.2 Differences Between Two Use-Cases of Stream Processing: DSMS and CEP

Aspects DSMS CEP

Processing target Continuous streams of data Discrete events

Typical data sources Video or audio stream, user clicks,
social media context.

Sensory information
System and service logs

Data variety Structured, semi/unstructured Normally structured

Logic implementation Continuously queries Event-matching rules or state automaton

Amount of applied logic Small Large

Typical application scenario Quantitative analytics Qualitative inference

Scalability Horizontal scale-out Vertical scale-up

Preferred venue of processing Collect and aggregate information
to a single location to achieve
centralized processing

Amortize the processing task throughout
the data chain and bring the computation
near the data source to relieve the network
overhead

Notification of decision Usually provide analytics result for
another system to make a decision

Make decision based on detected insight
and inform the outside world as fast as
possible

1518.2 THE FOUNDATIONS OF STREAM PROCESSING IN IoT

management. But with the built-in Trident abstraction, Apache Storm can easily fulfill the requirement
of CEP by using the microbatch paradigm to become a typical event-processing platform that is capable
of identifying meaningful patterns from incoming raw events. Such increasing unity has made it pos-
sible to propose an abstract architecture of a stream-processing system which generally satisfies the
processing needs coming from both the DSMS and CEP domains.

To this end, we first present a detailed analysis on the characteristics of stream data, as well as their
relevant processing requirements. Then we investigate the general architecture of a stream-processing
system to cater to these particular requirements and shed some light on how an integral data-processing
chain is constituted by the independent streaming components.

8.2.3 THE CHARACTERISTICS OF STREAM DATA IN IoT
As suggested by its name, stream data in IoT constitutes inherently dynamic, continuous, and unidirec-
tional data flows that are normally processed in a one-pass manner. Such a dynamic paradigm has en-
dowed it with several common properties, such as timeliness, randomness, endlessness, and volatility.

8.2.3.1 Timeliness and Instantaneity
Ensuring the timeliness of processing requires the ability to collect, transfer, process, and present
the stream data in real-time. As the value of data may vanish over time rather rapidly, the streaming
architecture needs to perform all the calculation and communication on the fly with the data that has
newly arrived.

On the other hand, the data generation in IoT environments mainly depends on the status of data
sources. The amount of data that is generated at low-activity periods can be dramatically less than the
number observed at peak times. Usually the stream-processing platform has no control over the volume
and complexity of the incoming data stream. Therefore, it is necessary to build an adaptive platform
that can elastically scale with respect to fluctuating processing demands, and still remain portable and
configurable in order to stay agile in response to the continuously shifting processing needs.

8.2.3.2 Randomness and Imperfection
Randomness and data imperfection are two direct consequences of the dynamic nature of stream data.
There could be several unforeseeable factors that affect the processing chain. For example, the data
generation process may induce randomness because the data sources are normally independently in-
stalled in different environments, which makes it nearly impossible to guarantee the sequence of data
arrival across different streams. Besides, the data transmission process can also result in disorder and
other defections in the same data stream, as some tuples may be lost, damaged, or delayed due to the
constantly changing network conditions. Stonebraker et al. have elaborated on the possible types of
data imperfection found in stream data, and list the capability of handling imperfections on the fly as
one of the eight requirements of real-time stream processing [7].

8.2.3.3 Endlessness and Continuousness
As long as the data sources are alive and the stream-processing system is properly functioning, newly
generated data will be continuously appended to the data channel until the whole application is explic-
itly turned off. Therefore, processing stream data needs the support of high-level availability to avoid
any possible interruption of data flow, which may lead to the accumulation of backlogs, and, finally,
the breach of the real-time promise.

152 CHAPTER 8 STREAM PROCESSING IN IoT

8.2.3.4 Volatility and Unrepeatability
Most of the stream data will be discarded once they have finished traversing through the stream-
processing system, which makes the existence of data quite volatile. Even if the data sources are able
to replay the data stream upon the retransmit request, the new stream is unlikely to be exactly the
same as the previous one. Also, the timeliness of result presentation would be impaired because of
the reprocessing.

Table 8.3 summarizes the processing requirements with regard to the corresponding characteristics,
where the phrases in italic denote the streaming components that need to be implemented in the differ-
ent stages of the data-processing chain.

Apart from these common properties, stream data in IoT is known to be highly dynamic and het-
erogeneous. The dynamism not only refers to the varying data volumes, but also it denotes the con-
stantly changing data quality, credibility, and presentation model that are caused by the dynamicity of
the environment. Since there could be a series of resource constraints that confine the ability of data
sources and even alter the structure of the data transmission network, the stream-processing system is
required to be workload-adaptive and context-aware so it can keep on finding meaningful insights from
the ever-changing raw data.

Heterogeneity is another notable characteristic brought on by the IoT context. As an example,
smart-city application, a mobile app that automatically searches for empty parking spaces for the car,
the driver needs to collect various formats of data from different places to make a comprehensive
decision. For instance, the app uses the GPS signal from the driver’s personal device to determine

Table 8.3 Characteristics of Stream Data and the Corresponding Processing Requirements

Characteristics Corresponding Requirement

Timeliness and instantaneity 1. Data cannot be detained in any phase of the processing chain, so there
should be a comprehensive data-collection subsystem working as a driving
force that powers the data in motion once they are generated.

2. For compute-intensive applications, a data aggregation subsystem is needed
to gather the collected data for centralized processing.

3. Each phase of the processing chain is preferable to be horizontal scalable in
order to keep pace with the fluctuated workload.

Randomness and imperfection 1. For cleansing and coordination purposes, data should be first buffered in a
message subsystem before being processed.

2. A declarative or imperative CLPS is responsible for implementing the
application logic and handling possible data-stream imperfections.

Endlessness and continuousness 1. The storage subsystem can only be used as an assistance component that
preserves the data synopsis or the query results.

2. Ensuring the availability is one of the core design principles due to the
continuousness of workload.

Volatility and unrepeatability 1. The data value and insights discovered from the streams should be
immediately submitted to other services or presented to users through a
presentation subsystem.

2. The fault-tolerance ability is another system design principle, as it is costly
or even impossible to replay the incoming stream during the recovery of
system failures.

1538.2 THE FOUNDATIONS OF STREAM PROCESSING IN IoT

the current position, inquires a vacancy pool to show the possible alternatives, including the location
and permitted parking hours, and makes a recommendation among these alternatives, using the traffic
conditions from a road- monitoring system. As most of the raw data are extracted from the sensory
information through distributed smart-devices and embedded sensors in real time, it is a great challenge
for the data collection system to achieve data federation and provide a unified view from the upcoming
heterogeneous sets of data and the prior knowledge extracted from the history information.

8.2.4 THE GENERAL ARCHITECTURE OF A STREAM-PROCESSING SYSTEM IN IoT
First of all, we argue that a stream-processing architecture should include an integral data-processing
chain that covers the whole lifespan of data (from its generation up to its consumption). However, most
of the previous research had used this term in a narrower sense, only referring to the organization of a
logic-processing system where the relevant analytics are performed.

For example, a widespread survey written by Gugola et al. broke down the general architecture
of an information-processing system into five major components: the receiver, decider, producer,
and forwarder that manipulate data streams according to the designated logic, and a knowledgebase
that assists the decider during the decision-making process [8]. This usage implicitly assumes that
the incoming data has already been shaped as continuous streams and can be readily obtained by the
receiver, so that the counting of processing latency should start from the time at which the data
streams enter the system, rather than the time when data is generated. However, this assumption
regarding the triviality of data collection and aggregation is tenable only when the research purpose
is to evaluate the correctness and competence of a particular logic-processing subsystem. When it
comes to building stream applications for real-world scenarios, such an assumption is poorly suited
because collecting and aggregating data from geo-distributed data sources are inherently costly pro-
cedures. There are a series of development and deployment hurdles to be overcome by the use of
dedicated streaming components.

Fig. 8.2 presents a general architecture of a stream-processing system that is tailored to the IoT pe-
culiarities. This architecture breaks down the whole data-processing chain into several stages according

FIGURE 8.2 General Architecture of a Stream Processing System in IoT

154 CHAPTER 8 STREAM PROCESSING IN IoT

to the functionality and target; we have identified six separate streaming components which are respon-
sible for data generation, collection, buffering, logic processing, storage, and presentation, respectively.

The data-generation system denotes the spectrum of data sources that continuously produce raw in-
formation for the data-processing chain. There are a lot of entities that can fulfill this definition, which
makes a full enumeration nearly impossible. However, we can still categorize the generated data into
three types, in accordance with their modalities.

The first type, static data, refers to the long-term information that has already been stored in
on-premise infrastructures or remote locations. As these data are mostly derived from the validated
knowledge and are not frequently updated, they are usually fetched by the stream-processing system
on a regular basis, serving as reference information during the analytic procedure. The second type,
centralized stream data, is a special type of stream that only comes from a single centralized data
source. Data of this type sometimes even demands to be processed right in the same place where it is
generated, so there would be no need for aggregating data to achieve a unified data-view. However,
this type of data is also not the mainstream input for IoT stream applications, for the reason that it
is rather rare that one data source can generate all the information that is required for the analytic
process. Apart from these two, Distributed stream data is the most common data type used in IoT
applications. Data of this type dynamically come from various distributed places in heterogeneous
formats, such as sensory information from sensor networks, personal preferences from mobile de-
vices, and social-media streams from Internet services. The volume of distributed stream data and
the time sensitivity of its application actually determine the performance requirement for a particular
stream-processing system.

However, no matter which form of data is being produced, the data sources have to generate a
unique timestamp associated with it to denote the time of generation. These timestamps are used to
build the continuous processing logic and further evaluate the timeliness of execution.

The Data Collection and Aggregation System combining with the Messaging and Buffering Sys-
tem plays the role of a message broker in the whole data-processing chain. To collect and aggregate
different types of data, various forms of source clients are independently installed to drive the newly
generated data in motion, while several aggregation channels are provided to gather these stream data
into a centralized buffer, using hierarchical aggregation agents. There are two types of message buf-
fers in terms of implementation: some are topic-based, which support a higher-level programmability,
whereas the others are queue-based, and thus mainly optimized for performance concerns.

The storage system and presentation system are two supportive components for a stream-processing
architecture. Keeping all the historical data in the storage system is neither feasible in implementation
nor necessary in terms of the processing requirement. Therefore, data that need to be stored are either
established knowledge, which can guide the future processing, or meaningful data synopsis, which
might arouse the future interest of users. On the other hand, the presentation system serves as an inter-
face of the stream-processing system, wherein it immediately hands over the data value to the higher-
level analytic tools, or directly delivers the results or notifications to the end users. It is also responsible
for receiving search-command or query updates from the external environment so that it can make the
stream-processing system more adaptive and responsive.

As the core of the data-processing chain, the Continuous Logic Processing System (CLPS) deserves
to be separately reviewed in the next section. As suggested by the name, it is responsible for processing
aggregated data according to the designated continuous logic, which could either come from the Data
Stream Management or Complex Event Processing background.

1558.3 CONTINUOUS LOGIC PROCESSING SYSTEM

8.3 CONTINUOUS LOGIC PROCESSING SYSTEM
In particular, we thoroughly discuss the history of the CLPS from an evolutionary perspective, and then
outline the differences among some state-of-the-art CLPS implementations.

The origin of the CLPS dates back to the beginning of this century. As shown in Fig. 8.3, the first
generation of CLPS, pioneered by NiagaraCQ [9] and STREAM [10], is merely several prototypes
from the research community and only suited for certain processing scenarios in which only a small
amount of data are generated. In addition to that, the types of operations supported by these prototypes
are also limited, which means that they are usually used as functional extensions of the existing Data
Base Management Systems (DBMS).

On the other hand, these prototypes are ground-breaking explorations in the new area of stream
processing. NiagaraCQ [9], for example, defines a simple command-language to create and drop con-
tinuous queries over XML files on the fly. It also supports grouping continuous queries based on their
structures, and performs incremental evaluations of each group by considering only the changed por-
tion of the targeted XML file. Besides, this command language adopts a declarative syntax to make it
developer-friendly, which can help the existing queries written in transitional SQL to be transplanted
into the new stream-processing platform.

In contrast to NiagaraCQ, the focus of STREAM [10] developed by Stanford is to transfer from
persistent relations to transient data streams with window-based data processing and approximate
query answering. STREAM directly supports SQL-like query language so that it can be regarded as a
functional extension of traditional DBMS. With the lessons learned from STREAM, the authors also
discuss models and issues in managing data-stream systems [11].

FIGURE 8.3 Evolutionary History of CLPS

156 CHAPTER 8 STREAM PROCESSING IN IoT

There are also some CLPSs that are directly built on top of existing databases. TelegraphCQ [12] is
an example of a system falling into this category. It is developed on PostgreSQL to cope with the high-
value and diverse data streams, and enables the possibility of adaptive querying.

Aurora [13] is the last breakthrough founded in the first generation of CLPS. Within the help of
the “boxes and arrows” paradigm, the continuous queries are implemented by explicit operator graphs
rather than declarative query languages such as SQL. As a result, the performance of stream processing
is significantly improved at the cost that the query implementations and internal processing mecha-
nisms are no longer transparent to the developer.

Around 2005, the research front advanced to distributed stream processing, where the CLPS is
able to take advantage of a set of distributed hosts to achieve better scalability and fault-tolerance. The
project Medusa [14] is an extension to Aurora, which leads to a scalable and QoS-oriented architecture.
As a result of distribution, the logical entities of Medusa are no longer tightly coupled and they have to
communicate with each other through a naming, discovering, and message-passing process. In addition
to that, the problem of load balancing and resource management also emerged as a great challenge in
distributed CLPSs, for example, as an operator node could be split into several atomic units and re-
mapped to participating machines, it is important to design a dynamically partitioned operator network
to improve the resource utilization.

Borealis [15] engine was developed on top of Medusa in order to integrate some advanced capabili-
ties, including dynamic query modification, result revision, and flexible monitoring. Apart from that,
Borealis also introduces the concept of a replicated processing node, and defines several new tuple
types, such as punctuation tuples and priority tuples, to gain finer control over the fault-tolerance and
manageability of the distributed platform.

In contrast to the academic projects such as Aurora, Medusa, and Borealis, whose queries are mostly
implemented based on an operator graph, System S [16], a proprietary CLPS developed by IBM, pro-
posed a query model based on data-flow graph to hide the implementation details as much as possible.
The core objective is to achieve highly scalable, resource-efficient processing through a user-oriented
declarative abstraction with a balanced resource-allocation mechanism. Afterward, the developers in
IBM also introduced an intermediate language called SPADE [17] to grant the users more flexibility by
allowing them to design the data-flow graph and the associate stream operators on their own.

The aforementioned systems all fall into the subcategory of DSMS. On the other hand, the project
Esper chooses a different evolutionary path in terms of the implementation of continuous logic. By us-
ing the event processing language (EPL) and a pluggable runtime library, Esper is suitable for distrib-
uted event processing that has different types of events defined [18]. Some commonly used operations
like joint splitting and filtering can be easily expressed by EPL with a very similar syntax to SQL, so
that the programming burden of the developer is also significantly relieved.

However, the advent of Web 2.0 and IoT applications has brought the previous CLPSs to their
knees. Around the year of 2011, CLPS evolved into the third generation, which is inherently scalable
and fault-tolerant, and designed for a large-size cluster composed of commodity machines.

Among others, S4 [19] developed by Yahoo! is generally perceived as the first CLPS that meets the
criteria of fully scalable and fault-tolerant. It offers intuitive programming API similar to MapReduce
that can be used to develop streaming applications. However, S4 does not guarantee the correctness of
processing, so streaming data could be either lost or repeatedly executed during the processing process.

Fortunately, the emergence of the Storm project [20] gracefully handles this requirement by intro-
ducing the anchor mechanism. With anchor, Storm is able to process a tuple with either an exactly once,

1578.4 CHALLENGES AND FUTURE DIRECTIONS

at least once, or at most once, guarantee. Besides, it supports almost arbitrary programming languages
such as Clojure, Java, Ruby, and Python to implement the spouts and bolts, which are the logical op-
erations in Storm. It also greatly enhances its fault-tolerant ability with finely grained task-level paral-
lelization, as when a host fails, all of the running tasks on it could be transferred to other healthy hosts.

TimeStream [21] is another scalable CLPS written in C# by Microsoft. According to the authors’
evaluation, it is able to handle an advertising aggregation data-source with a data generation speed
of 700,000 URLs per s, 1 per a 6-node commodity cluster, all within 2 s. Similar to Storm and S4,
TimeStream adopts a task DAG to denote the sequence of logical operators. To make the system adap-
tive and autonomous, there is a resilient substitution mechanism to dynamically adjust and reconfigure
task DAG in accordance with the changes to incoming streams or in the presence of any failed nodes.

There are also some other state-of-the-art CLPSs that are available to be inserted into the data-
processing chain. As shown in Table 8.4, we compare these alternatives in terms of:

• System architecture: it outlines internally how a CLPS is organized and coordinated
• Data transmission: the way that streaming data feeds the processing system. Pull-based means that

CLPS is responsible for actively fetching data, whereas push-based means passive message- reception
• Development language: which languages are being used to develop the CLPS
• Programming: which components need to be programmed to apply the continuous logic
• Partitioning and parallelism: how data is partitioned to achieve processing parallelization
• Accurate recovery: whether the CLPS is able to accurately reproduce the same processing result

when failures occur to the system
• State consistency: whether the system is able to ensure the consistency state for all of the

participating components during the processing procedure

8.4 CHALLENGES AND FUTURE DIRECTIONS
The current stream-processing systems have been greatly improved to cater to the emerging needs of
IoT applications. A state-of-the-art stream-processing system now should satisfy the following criteria:
(1) horizontal scalability to accommodate different sizes of processing needs, (2) easy to program and
manage while concealing the tedious low-level implantation from its users, and (3) capable of dealing
with possible hardware faults with graceful performance degradation rather than sudden termination.

However, there is still a long way to go before the stream-processing systems achieve their full matu-
rity. The following aspects summarize the challenges that still need to be further addressed, and also point
toward the possible research directions that should attract more attention from the research community.

8.4.1 SCALABILITY
Scalability does not just refer to the ability to expand the system to catch up to the ever-increasing data
streams, so that the promise of the Quality of Service (QoS) or Service Level Agreement (SLA) could
be honored. Elasticity, the ability to dynamically scale to the right size on demand, is the future and
advanced form of scalability. An efficient resource-allocation strategy should be adopted, by which
the stream-processing system can start running with only limited resource usages, especially when the
data sources are temporarily idle during the application-deployment phase. Afterward, as the workload
of IoT may fluctuate and the user requirement may change over time, the system should dynamically

1
5

8
C

H
A

P
TE

R
 8

 STR
EA

M
 P

R
O

C
ESSIN

G
 IN

 IoT

Table 8.4 Comparison Between State-of-the-Art CLPS Implementations

Aspects Apache Storm S4 Spark Streaming Apache Samza Apache Flink Esper

System architecture Master–slave Symmetric Master–slave Master–slave Master–slave Master–slave

Data transmission Pull-based Push-based 1. Push-based with flume
2. Pull-based with a custom sink

Pull-based Push-based Pull-based

Develop language Clojure Java Scala, Java Java Java, Scala Java, C#

programming Spouts and
Bolts

Processing
elements

Distributed datasets Samza job Data stream and
transformations

EPL

Partitioning and
parallelism

Sending to
different tasks

Based on key-
value pairs

Sending to different tasks Sending to different
tasks

Sending to different
tasks

Partition based
on context

Accurate recovery Yes, with
trident

No Yes Yes Yes No

State consistency No No Yes, with state DStream Yes, with embedded
key-value store

Yes, with asynchronous
distributed snapshots

No

1598.5 CONCLUSIONS

provision new resources by taking into account the characteristics of the available hardware infra-
structure, and free up some of them when they are no longer needed. Such an awareness of underlying
infrastructure can help the system to perform more reasonable elastic operations, and is also useful for
scheduling task loads in case of hardware failures.

8.4.2 ROBUSTNESS
Fault-tolerance is a commonplace topic when it comes to the design and implantation of stream-
processing systems, especially when considering that its availability is one of the most crucial prereq-
uisites to guarantee the correctness and significance of real-time processing. The previous research and
practice on fault-tolerance mostly rely on either system replication or state checkpointing, which are
both not flexible enough to tailor to the robustness for operations in accordance with the trending fault-
types. Designing a hybrid and configurable fault-tolerance mechanism that is capable of recovering the
system from unforeseeable failures is an open research-question left to be answered.

8.4.3 SLA-COMPLIANCE
How to negotiate the SLA for stream-processing systems has been rarely discussed in the previous re-
search. It also depends on which platform the system is running on, and how stakeholders are involved.
But an inherent requirement is to achieve cost-efficiency, which translates to minimizing the monetary
cost for the users, as well as reducing the operational cost for the provider (possibly data centers).
Achieving SLA-compliance requires the stream-processing system to be equipped with the ability to
trade-off between the justifiable metrics, such as performance and robustness, with the running cost, the
balance of which should be left for the user to decide when signing up for SLA.

As the stream data from the IoT background tends to be more dynamic and bursty, it would also
be interesting to investigate the possibility of providing probabilistic SLA guarantees rather than tradi-
tional rule-based promises.

8.4.4 LOAD BALANCING
Currently, the applied load-balance schemes are very simplistic, the major target of which is to nor-
mally improve the performance of the system, especially by maximizing the throughput. However, the
importance of load balance goes far beyond performance optimization. A wrong balancing decision
may lead to unnecessary load-shedding, dropping arrived messages when the system is deemed to be
overloaded, which ultimately impairs the veracity of the processing result. It is challenging to take the
low-level metrics such as task capacity or lengths of thread-message-queues into consideration during
the load-balancing process, but the perspective is very promising, as currently the system utilization
rate is still moderate; even the stream-processing system is already saturated, where the inefficient
load-balance mechanism is the culprit to blame.

8.5 CONCLUSIONS
To summarize, we have presented the emergence of stream processing as a complement to the batch
paradigm, which is especially suited to the IoT context. We discussed the relationship between IoT
and stream processing in the introduction, and then outlined the formal definition of stream data as

160 CHAPTER 8 STREAM PROCESSING IN IoT

well as the associate stream-processing concept in the following section. We have also identified the
unique characteristics of stream data in IoT and investigated how the processing requirements of them
would affect the organization of a stream-processing system. Based on the aforementioned analysis,
we presented a general architecture for such a system, and explained in detail about the history and
comparison of different continuous logic-processing subsystems. The challenges and open questions
for stream processing in IoT are also discussed in this chapter.

It can be concluded that the research on utilizing the stream-processing paradigm to build real-time
IoT applications is gradually arousing a storm of hype. Ultimately, the prevalence of such applications
requires the development of adaptive and autonomous stream-processing systems to better uncover the
connotative value that is hidden within the huge volume of volatile streams.

REFERENCES
[1] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM

2008;51(1):107–13.
[2] Cattell R. Scalable SQL and NoSQL data stores. SIGMOD Rec 2011;39(4):12–27.
[3] Kitchin R. The real-time city? Big data and smart urbanism. GeoJournal 2013;79(1):1–14.
[4] Humphreys G, Houston M, Ng R, Frank R, Ahern S, Kirchner PD, Klosowski JT. Chromium: a stream-

processing framework for interactive rendering on clusters. In: Proceedings of the twenty-ninth annual
conference on computer graphics and interactive techniques. New York, NY, USA; 2002. p. 693–702.

[5] Taylor MG. Phase estimation methods for optical coherent detection using digital signal processing. J Light
Technol 2009;27(7):901–14.

[6] McCarthy D, Dayal U. The architecture of an active database management system. In: Proceedings of
the 1989 ACM SIGMOD international conference on management of data. New York, NY, USA; 1989.
p. 215–224.

[7] Stonebraker M, Çetintemel U, Zdonik S. The 8 requirements of real-time stream processing. SIGMOD Rec
2005;34(4):42–7.

[8] Cugola G, Margara A. Processing flows of information: from data stream to complex event processing. ACM
Comput Surv 2012;44(3):15:1–15.

[9] Chen J, DeWitt DJ, Tian F, Wang Y. NiagaraCQ: a scalable continuous query system for Internet databases.
In: Proceedings of the 2000 ACM SIGMOD international conference on management of data. New York, NY,
USA; 2000. p. 379–390.

[10] Arasu A, Babcock B, Babu S, Cieslewicz J, Ito K, Motwani R, Srivastava U, Widom J. Stream: the Stanford
data stream management system; 2004.

[11] Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream systems. In: Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, New
York, NY, USA; 2002. p. 1–16.

[12] Chandrasekaran S, Cooper O, Deshpande A, Franklin MJ, Hellerstein JM, Hong W, Krishnamurthy S,
Madden SR, Reiss F, Shah MA. TelegraphCQ: continuous dataflow processing. In: Proceedings of the 2003
ACM SIGMOD international conference on management of data. New York, NY, USA; 2003. p. 668–668.

[13] Abadi DJ, Carney D, Çetintemel U, Cherniack M, Convey C, Lee S, Stonebraker M, Tatbul N, Zdonik S.
Aurora: a new model and architecture for data stream management. VLDB J 2003;12(2):120–39.

[14] Cherniack M, Balakrishnan H, Balazinska M, Carney D, Cetintemel U, Xing SY, Xing Y, Zdonik SB. Scalable
distributed stream processing. CIDR 2003;3:257–68.

[15] Abadi DJ, Ahmad Y, Balazinska M, Cetintemel U, Cherniack M, Hwang JH, et al. The design of the borealis
stream processing engine. CIDR 2005;5:277–89.

http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00008-3/ref0050

161REFERENCES

[16] Wu KL, Hildrum KW, Fan W, Yu PS, Aggarwal CC, George DA, Gedik B, Bouillet E, Gu X, Luo G, Wang
H. Challenges and experience in prototyping a multi-modal stream analytic and monitoring application
on system S. In: Proceedings of the thirty-third international conference on very large data bases. Vienna,
Austria; 2007. p. 1185–1196.

[17] Gedik B, Andrade H, Wu HL, Yu PS, Doo M. SPADE: the system S declarative stream processing engine. In:
Proceedings of the 2008 ACM SIGMOD international conference on management of data. New York, NY,
USA; 2008. p. 1123–1134.

[18] Anicic D, Fodor P, Rudolph S, Stojanovic N. EP-SPARQL: a unified language for event processing and
stream reasoning. In: Proceedings of the twentieth international conference on World Wide Web. New York,
NY, USA; 2011. p. 635–644.

[19] Neumeyer L, Robbins B, Nair A, Kesari A. S4: distributed stream computing platform. In: 2010 IEEE
international conference on data mining workshops (ICDMW); 2010. p. 170–177.

[20] Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu M, Donham
J, Bhagat N, Mittal S, Ryaboy D. Storm@Twitter. In: Proceedings of the 2014 ACM SIGMOD international
conference on management of data. New York, NY, USA; 2014. p. 147–156.

[21] Qian Z, He Y, Su C, Wu Z, Zhu H, , Zhang T, Zhou L, Yu Y, Zhang Z. TimeStream: reliable stream computation
in the cloud. In: EuroSys; 2013.

Page left intentionally blank

163

CHAPTER

A FRAMEWORK FOR
DISTRIBUTED DATA
ANALYSIS FOR IoT

M. Moshtaghi, C. Leckie, S. Karunasekera
Department of Computing and Information Systems, The University of Melbourne, Australia

9.1 INTRODUCTION
In this chapter, we discuss a framework for data analysis as part of a monitoring system where the
data are distributed in the network and edge devices have limited capacity in terms of memory and
computational power. The main idea of this framework is to support efficient local processing and sum-
marization of the data at the nodes, followed by global processing of the local summaries. We introduce
this framework within the context of distributed anomaly detection but it can be easily extended to a
wider range of tasks. Our framework follows a similar idea to Fog computing [1] in the sense that it
reduces the amount of data routed over the network backbone using the computational capabilities of
the devices collecting the data.

The proposed framework covers three aspects: local data modeling, communication, and global data
modeling. The local data modeling requires an efficient algorithm with low computational cost. The
algorithm calculates local summaries of the data and identifies anomalies in the local data. Only the
summaries of the data are communicated to a central location which we refer to as sink. Limiting
the communication to only data summaries alleviates the overhead of communicating all the data over
the network. The global data modeling component, which is located in a central location, is responsible
for finding global summaries and anomalies.

We start this chapter by providing an introduction on the anomaly detection task in IoT followed
by more detailed description of what constitutes an anomaly and a formal problem statement. In
Section 9.5, the distributed anomaly detection framework is described. We show the performance of
the approach with three examples from real-life and synthetic datasets. In Section 9.6, we introduce an
efficient incremental approach to estimate summaries of the data to increase the flexibility and accuracy
of the framework. We summarize the findings discussed in this chapter in Section 9.7.

9.2 PRELIMINARIES
Recent advancements in sensing technologies provide a cost-effective platform for monitoring
applications to gather detailed observations from different environments including factories, mines,
agriculture, and urban areas. An important aspect of a monitoring system is the ability to detect sig-
nificant events or unusual behavior in the environment. These unusual patterns are also called outliers,

9

164 CHAPTER 9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT

surprises, novelties, or events in different applications. Anomaly detection methods play an important
role in modeling and detecting these anomalous events in IoT applications and have been applied in a
variety of applications [2], including intrusion detection [3,4], event detection [5], and quality assur-
ance [6]. Numerous factors affect the use of anomaly detection in these applications, such as mobility
in sensors, the condition of the environment (benign or adverse [7]), the dynamics of the environment,
and energy constraints. However, the most common approach in anomaly detection is to build a model
of the normal data and then identify deviations from this model as anomalies.

Therefore, the challenge is to build a model of the multidimensional data distributed in the network
in a robust and efficient manner—robust in the sense that the model accurately captures the characteris-
tics of the data, and efficient in the sense that the model satisfies the resource constraints of the network.
There is a wide range of anomaly detection techniques applied to monitoring applications [8–14]. How-
ever, only few techniques consider both communication and computational constraints of the nodes in
such network. In this chapter we describe a set of techniques based on the basic distributed anomaly
detection technique proposed by Rajasegarar et al. in Ref. [8]. These techniques focus on reducing the
communication and computational cost of detecting anomalies in the data.

There are two components in the distributed framework by Rajasegarar et al. [8]: a local hyperel-
lipsoidal model of the data and a distributed anomaly detection model. This framework relies on hyper-
ellipsoidal models for anomaly detection, which are extensions of the 3σ rule for outlier detection to
multivariate data. The 3σ rule is based on the fact that 99% of a univariate Gaussian distribution with
mean µ and standard deviation of σ lies in µ ± 3σ. For example, if the height distribution of Australian
adult males has a mean of 175 cm and a standard deviation of 8, there is only 1% chance of encounter-
ing a person from this population whose height is outside this interval [151 199]. The 3σ rule treats
these rare observations as outliers. This interval has a hyperellipsoidal shape in higher dimensions and
it is defined based on the mean and the covariance matrix of the data. A formal definition of this hyper-
ellipsoidal interval (boundary) and its calculation are given in Section 9.4.1.

In the distributed framework of the Rajasegarar et al. [8] (shown in Fig. 9.1), each node constructs
a hyperellipsoidal decision boundary for its local data (local model) and sends the parameters of this
decision boundary (step 1) to a sink node where all the local models are merged to find a global deci-
sion boundary for the network (step 2). The parameters of the global decision boundary are then sent
back to the nodes (step 3).

The main advantage of this framework is that it can reduce in-network communication by limiting
communication overhead to the parameters of the decision boundaries, which can be orders of mag-
nitude smaller than sending all the raw data to a single location in the network. The applied hyperel-
lipsoidal model provides a robust decision boundary for a variety of different types of data distribution
and can be calculated efficiently.

Other advantages of this framework are as follows:

• The hyperellipsoidal model has linear computational complexity at each node.
• The hyperellipsoidal model can tolerate some degree of noise in the training data.
• The framework can detect both local (within node) and global (within network) anomalies.

A key assumption in this framework is that the environment is homogeneous, that is, there is no
difference between the distribution of the data observed at each node. Another limitation of this ap-
proach is that it uses a batch calculation of the hyperellipsoidal decision boundaries, which requires
each node to have enough memory to buffer some window of the data. Batch calculation also incurs

1659.3 ANOMALY DETECTION

delays in the network during model recalculation. In this chapter, we discuss approaches to generalize
this framework to suit non-homogeneous environments where the underlying distribution of normal
measurements varies from node to node. Later, we show how local hyperellipsoidal boundaries (step
1, Fig. 9.1) can be calculated online to improve the efficiency and practicality of the framework. In the
next section, we start by a giving a brief introduction of anomaly detection task.

9.3 ANOMALY DETECTION
Anomaly detection is an important unsupervised data processing task which enables us to detect abnor-
mal behavior without having a priori knowledge of possible abnormalities. An anomaly can be defined
as a pattern in the data that does not conform to a well-defined notion of normal behavior [2]. This
definition is very general and is based on how patterns deviate from normal behavior. On this basis we
can categorize anomalies in the data into three categories:

• Outliers—Short anomalous patterns that appear in a nonsystematic way in the collected data,
usually arising due to noise or faults, for example, due to communication errors.

• Events/Change—These patterns appear with a systematic and sudden change from previously
known normal behavior. The duration of these patterns is usually longer than outliers. In

FIGURE 9.1 A Diagram of the Distributed Anomaly Detection Technique

Nodes in the network are shown with a circle, and each ellipse, marked with a letter, is a local model calculated at
each node.

166 CHAPTER 9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT

environmental monitoring, extreme weather conditions are examples of events. The start of an
event is usually called a change point.

• Drifts—Slow, unidirectional, long-term changes in data [15]. This usually happens due to the
onset of a fault in a sensor.

Fig. 9.2 shows an example of each of these categories using a synthetically generated dataset. No-
tice that long-term characteristics of the data are usually reflected in the scatter plot of the data whereas
the time series of the data represent the dynamics of each attribute in the dataset.

Another categorization of anomalies is given in Ref. [8] considering the topology of a network.
Three categories of anomalies identified in this study are as follows:

• First order—Anomalies can occur in an individual node, that is, some observations at a node are
anomalous with respect to the rest of the data.

• Second order—All of the observed data at a node can be anomalous with respect to the
neighboring nodes. In this case, such a node is considered as an anomalous node in the network.

• Third order—A cluster of nodes are anomalous with respect to other nodes in the network.

Fig. 9.3 demonstrates this categorization in a network topology.
There is a large body of research on anomaly detection techniques for different applications

[2,4,14,16,17]. Many different techniques have been applied for anomaly detection in these applica-
tions. Here, we briefly introduce some of the main types of techniques used in anomaly detection. De-
tailed descriptions of these techniques can be found in surveys on anomaly detection techniques such
as those by Chandola et al. [2,7] and Rajasegarar et al. [4].

The first type of anomaly detection techniques uses rule-based methods. Owing to their simplicity
and low computational overhead, these techniques have been successfully implemented in many ap-
plications such as intrusion detection. In these approaches, if an observed data sample does not match
a predefined set of rules, it is considered as an anomaly [18,19]. The next type of anomaly detection
approaches use dynamic system modeling to model the normal behavior of the data, and anomalous
behavior is then identified by the extent of deviation from the normal model of the data [20]. Dynamic

FIGURE 9.2 An Example of Different Categories of Data Anomaly in a Two-Dimensional Dataset

(A) Scatter plot overview. (B) Time series overview.

1679.3 ANOMALY DETECTION

Bayesian networks are a common pattern recognition technique used in this area [21]. In statistical
approaches for anomaly detection, anomalies are considered as those data points that have low likeli-
hood given the expected distribution of the data. The main assumption in these approaches is that the
distribution of the data is known and the parameters of the distribution need to be estimated using
the normal data [12]. Density-based and nearest neighborhood approaches identify data points that reside
in areas of the input space with low density as anomalous [5,13]. One-class classifiers such as one-class
support vector machines have also been used to identify anomalies in a set of data [11] by finding a
discriminant between the main body of the data and potential outliers. Clustering techniques as a basic
knowledge discovery process can also be used for anomaly detection on unlabeled data [22].

In traditional techniques for anomaly detection the data are assumed to be in one location. However,
collecting all the data from the nodes in one location is not always possible. If we expect to run anomaly
detection locally, the processing unit at each node may not be powerful enough to support sophisticated
anomaly detection algorithms. Therefore, there is a need for distributed and efficient anomaly detec-
tion algorithms suitable for IoT applications. A distributed approach to anomaly detection exploits the
limited computational resources of the nodes for anomaly detection. Nodes can perform the detection
locally by collaborating with each other. This can save a considerable amount of energy at the nodes
by avoiding raw data transmission. Therefore, in this case the benefits of using anomaly detection tech-
niques are twofold: (1) the ability to detect interesting samples and (2) the ability to conserve energy
resources at the nodes.

As mentioned in the introduction, a practical approach for distributed anomaly detection is proposed
by Rajasegarar et al. in Ref. [8]. The authors present a hyperellipsoidal model for distributed anomaly
detection, where a single hyperellipsoid is used to determine the distribution of all measurements in
the network. However, if the monitored environment is nonhomogeneous, comprising a mixture of
different distributions, then this distributed anomaly detection approach will result in low detection
accuracy. This situation can arise in environments, for example, where some sensors are exposed to
direct sunlight, while others lie in shadow. In this situation, the measurements from each sensor node
are drawn from one of the two different underlying distributions, and the anomaly detection algorithm
needs to accommodate this type of normal behavior.

FIGURE 9.3 Types of Anomalies Considering the Topology of a Network

In the scatter plot, crosses represent anomalous measurements and dots represent normal measurements.

168 CHAPTER 9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT

9.4 PROBLEM STATEMENT AND DEFINITIONS
Our aim is to apply an anomaly detection algorithm to the data distributed in a network. We consider
a sensor network topology in which a set of sensors N = {Nj:J = 1,…,l} are connected in a hierarchical
tree topology to a sink B. Over a fixed monitoring period, each node Nj observes a set of nj measure-
ments = =X x k n{ : 1, , }j k

j
j where each measurement ∈ℜxk

j d is a vector of values observed at the
node, for example, in a monitoring application these values can be temperature, humidity, and light
intensity. Our goal is to partition the set X of measurements from all nodes ∪ …= Xj l j1, , into normal
measurements NPX and anomalous measurements APX, that is, ∪ ∩= = ∅X NP AP NP AP,x x x x . We as-
sume that all of the normal measurements NPXj at node Nj are drawn from the same distribution NPxj ≈
X(µr, ∑r), where µr and ∑r are the population mean and covariance of the distribution. Not all the nodes
necessarily have the same distributions of measurements, so across the whole network, normal mea-
surements are drawn from a mixture of c possible distributions {X(µr, ∑r): r = 1,…,c}, where c l .
Hence the N nodes can be grouped according to whether their measurements are from the same distri-
bution. In Ref. [8], the authors have addressed this problem for the case where c = 1.

9.4.1 HYPERELLIPSOIDAL ANOMALY DETECTION
Hyperellipsoids are remarkably flexible and can capture the central tendencies of a wide range of datas-
ets. We introduce the formulas for calculating a hyperellipsoidal decision boundary to detect anomalies.

Let x be an observation of the random vector µ= … ΣX XX X(, ,) ~ (,)d1
T with population mean

µ = (µ1,…,µd)
T and (positive definite) population covariance matrix ∑ = [cov(X)]. For fixed µ ∈ℜd,

the level set of µ µ µ µ− = − Σ − = −−
Σ−Q x x x x() () () ()T 1 2

1 for scalar t2 > 0 is

µ µΣ = ∈ℜ − =−
Σ−t tx xsurf(, ;) { | }d1 2 2

1 (9.1)

where ∑−1 is sometimes called the characteristic matrix of Q, and µ µ µ− = − −Σ Σ
−

−x x x() ()T 1
1 is the

statistical (Mahalanobis) distance between x and µ. Geometrically, surf(∑–1,µ;t) is the surface of the
hyperellipsoid (more simply, ellipsoid) in d-space induced by ∑−1, all of whose points are at a constant
Mahalanobis distance (t) from its center µ. The parameters of this ellipsoid are µ, ∑, and t. We can
estimate µ and ∑ using the sample mean and sample covariance matrix at each node Nj,

∑= = …
=

n m mm x / (, ,)j k
j

k

n

j d
1

1
T

j

(9.2)

∑= − − −
=

S nx m x m()() /(1)j k
j

j k
j

j j
k

n
T

1

j

(9.3)

Now, we can define normal and anomalous measurement relative to the ellipsoidal parameters
−S(, m)j j

1 , as

≡ = ∈ − ≤−
−S t t X(, m ;) x x mNP NP { X | }~ (normal points in) andX X j j j k j j S jk

1
,

2 2

j j
j
1

(9.4)

≡ = ∈ − >−
−S t X t X(, m ;) x x mAP NP { | }~ (anomalouspoints in)X X j j j k j j S jk

1
,

2 2

j j
j
1

(9.5)

Xj={xkj:k=1,…,nj}
xkj∈ℜd

∪j=1,…,lXj
X=NPx∪APx,NPx∩APx=∅

c∈l

X=(X1,…,Xd)T∼X(µ,O)
µ∈ℜd

Q(x−µ)=(x−µ)TO−1(x−µ)=(x−µ)O−12

surf(O−1,µ;t)={x∈ℜd|x−µO−12=t2}

x−µO−1=(x−µ)TO−1(x−µ)

mj=∑k=1njxkj/nj=(m1,…,md)T

Sj=∑k=1nj(xkj−mj)(xkj−mj)T/(nj−1)

(Sj−1,mj)

NPXj≡NPXj(Sj−1,mj ;t)={xj,k≡Xj|xk−mjSj−12≤t2}∼(normal points in Xj) and

APXj≡NPXj(Sj−1,mj ;t)={xj,k∈Xj|xk−mjSj−12>t2}∼(anomalous points in Xj)

1699.5 DISTRIBUTED ANOMALY DETECTION

We choose χ= γ
−t ()d

2 2 1 (ie, the inverse of the χ2 statistic with d-degrees of freedom at γ []∈ 0,1).
This results in a hyperellipsoidal boundary that covers at least 100γ% of the data under the assumption
that the data have a Gaussian distribution [23]. For example, the choice of γ = 0.99 results in a hyperel-
lipsoidal boundary that is the equivalent of the 3σ rule in one dimension. The Gaussian assumption is
rarely true in real life; however this threshold is a close approximation for any unimodal distribution.
We recommend choosing γ ∈[0.95,0.99] for anomaly detection. We now have all the three parameters
of the ellipsoid that partitions the data into anomalous and normal points. In the next section, we de-
scribe a framework to apply this anomaly detection technique over a network.

9.5 DISTRIBUTED ANOMALY DETECTION
In this section, we generalize the distributed anomaly detection approach proposed in Ref. [8] to the
case of learning a multimodal global model of normal behavior in the network. We first model the nor-
mal data of each node using the ellipsoidal boundary described in Section 9.4.1. We then communicate
the parameters of the hyperellipsoid from each node to the sink, where we cluster these l hyperellip-
soids to c clusters that reflect the global distribution of measurements in the network.

The c merged hyperellipsoids corresponding to these clusters are then reported back to the nodes
where anomaly detection can be performed. The final step is based on the idea that at some point in
time all the nodes will observe all the modes in the environment. In some applications, the network
may have multiple subsections which are expected to have different characteristics. In these cases,
this algorithm should be run independently within each subsection. The steps of the algorithm are
shown in Box 9.1.

9.5.1 CLUSTERING ELLIPSOIDS
In this section, we introduce a clustering approach to group similar ellipsoids together instead of simply
merging all the ellipsoids into one ellipsoid. The main purpose of clustering ellipsoids is to remove
redundancy between the ellipsoids reported by the nodes that have the same underlying distributions.

t2=(χd2)γ−1γ≡0,1

ALGORITHM 9.1 DISTRIBUTED ANOMALY DETECTION BY CLUSTERING ELLIPSOIDS
Step 1—At each node Nj ∈ N
• Calculate the local ellipsoid ej from Xj

• Transmit parameters of ej to the sink B

Step 2—At base station B
• Receive ellipsoid parameters ej from each node
• Calculate similarity s(ej, ei) between all pairs of ellipsoids
• Estimate the number of clusters c among the ellipsoids

{ }= =E e j l1, ,j

• Cluster ellipsoids E into c merged ellipsoids { }′ = ′ =E e r c1, ,r

• Transmit parameters of merged ellipsoids E9 to each sensor Nj ∈ N

Step 3—At each sensor
• Use merged ellipsoids E9 to detect global anomalies by marking any observation that falls outside all the merged

ellipsoids.

E=ejj=1,…,l
E9=e9rr=1,…,c

170 CHAPTER 9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT

This clustering generalizes the approach in Ref. [8] to the case where we have a set of global ellipsoids
E9. Note that the method in Ref. [8] is a special case of the clustering approach where c = 1. Fig. 9.4
illustrates the two approaches for c = 1 and c = 2.

To illustrate the importance of detecting anomalies using multiple ellipses at the global level in nonho-
mogeneous environments, consider the example shown in Fig. 9.5, which shows measurements from two

FIGURE 9.4 Global Ellipsoidal Boundaries for the Cases of a Single Global Ellipsoid (c = 1) and Multiple Global
Ellipsoids (c = 2) After Clustering

FIGURE 9.5 Example of Global Measurements in a Nonhomogeneous Environment (Normal Measurements are
Represented by Squares, Whereas Anomalies Introduced Into the Data are Represented by Crosses)

Note that trying to fit a single ellipsoid to these measurements results in a poor approximation of the underlying
distribution.

1719.5 DISTRIBUTED ANOMALY DETECTION

groups that have distinct and separate distributions. Trying to fit a single ellipse (c = 1) to these data results
in underfitting, whereas two global ellipses (c = 2) can provide an accurate fit for normal measurements.

To determine global anomalies in nonhomogeneous environments, each node Nj sends the param-
eters −S n(, m),j j j

1 of its local ellipsoid ej to the sink B. As shown in Box 9.1, the sink gathers these
parameters from each node, and clusters the ellipsoids. If needed, the sink can report the parameters of
the clustered ellipsoids back to the nodes to provide them with a set of global decision boundaries. We
now describe the main steps in more detail.

Calculating similarities between ellipsoids—To compare and cluster ellipsoids, we first need a
similarity or distance measure between a pair of ellipsoids. We use a simple similarity measure based
on the distance between the centers of the ellipsoids. Let m1 and m2 be the centers of ellipsoids e1 and
e2, respectively. The similarity function s(e1, e2) that we use was first suggested in Ref. [24] as follows:

= − −s e e(,) e m m
1 2

1 2

 (9.6)

Estimating the number of clusters—Before clustering the ellipsoids { }= =E e j l1, ,j , we need to esti-
mate the number of clusters c. Juhász proved in Ref. [25] that a nonsymmetric n × n matrix consisting of c
blocks (clusters) has c large eigenvalues of order c while the other characteristic values remain of order n as
n tends to infinity. A similarity matrix that can be perfectly divided into c clusters would have a c-block diago-
nal shape. Fallah et al. [26] used this theorem as a preclustering assessment method to help when choosing the
best number of clusters, by looking for a “big jump” in a plot of the square roots of the ordered eigenvalues
(called a PRE plot) of a similarity matrix S (square roots just improve the visual interpretation of where the
big jump occurs). Note that the theory underlying this strategy is not tied to any clustering algorithm.

To detect the number of clusters automatically from a PRE plot, we adapt an approach given in
Ref. [26]. A PRE plot diagram of a similarity matrix can be characterized by an initially high negative
gradient followed by a horizontal gradient. The point on the x-axis where these two gradients intersect
yields the number of clusters c. To detect this change in the PRE plot, the gradient between each pair of
consecutive points on the plot is calculated, and a large difference between consecutive gradient values
is used to choose the value of c where there is a change in the order of magnitude of the eigenvalues.
Note that the calculation of eigenvalues is performed at the sink, and not at the nodes. The sink is not
considered to be constrained in computational power.

Clustering ellipsoids—Having defined a similarity measure between ellipsoids, the given set of
ellipsoids E can be clustered using bottom-up hierarchical clustering with single linkage. For this al-
gorithm, the parameter for the number of clusters c in the hierarchical clustering is based on the value
derived from the PRE plot as described earlier.

The clustering partitions E into c sets of ellipsoids, where each set of ellipsoids in a partition needs
to be merged into a single ellipsoid, that is, { }→ ′ = ′ =E E e k c1, ,k . Ellipsoids can be merged in a pair-
wise manner as follows. Let −S n(, m),i i i

1 and −S n(, m),j j j
1 be the parameters of ellipsoids ei and ej, then

the parameters −S n(, m),1 of the ellipsoid é derived from merging ei and ej are [27]

= +n n ni j (9.7)

= +m
n

n
m

n

n
mi

i
j

j

(9.8)

= −
−

+
−
−

+
−

− − S
n

n
S

n

n
S

n n

n n
m m m m

1

1

1

1 (1)
()()i

i
j

j
i j

i j i j
T

(9.9)

(Sj−1,mj,nj)

s(e1,e2)=e−m1−m2

E=ejj=1,…,l

n

E→E9=e9kk=1,…,c
(Si−1,mi,ni)(Sj−1,mj,nj)
(S−1,m, n)

n=ni+nj

m=ninmi+njnmj

S=ni−1n−1Si+nj−1n−1Sj+ninjn(n−1)[(mi−mj)(mi−mj)T]

172 CHAPTER 9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT

Note that the Eq. (9.9) is given to merge two sample covariance matrices and not the inverse of the
sample covariance matrices, which are transmitted by the nodes. The sink should perform the necessary
inverse operations to calculate S−1. After merging, the merged ellipsoids E9 can be transmitted back to
the sensor nodes to detect global anomalies.

9.5.2 EXPERIMENTAL RESULTS
We now provide three examples (one real-life data set and two synthetic datasets where the modes or
partitions in the data can be controlled) to illustrate how the distributed anomaly detection approach
described earlier works. We compare the single global ellipsoid approach in Ref. [8] and the ellipsoidal
clustering approach discussed here. We also use a centralized approach where all the data are trans-
ferred to the sink as a baseline. In the baseline approach, we first cluster all the data at the sink using
the k-means clustering algorithm. Then, ellipsoidal decision boundaries are calculated using the data in
each cluster and anomalies are flagged using all decision boundaries. Note that in the baseline, the cost
of transferring all the data to the sink can be large compared to the first two methods.

The synthetic datasets—To investigate the effect of a nonhomogeneous environment, data from
each node were generated randomly according to the distribution (cluster) assigned to that node. We
used multiple bivariate Gaussian distributions with different parameters, and assigned a distribution
from the available distributions to each node. Data in each node are randomly generated using the as-
signed distribution to the node. In the first dataset two distributions, and in the second dataset three dis-
tributions were considered across the network. The data are generated in the network so that 30 nodes
observe data from the first cluster, 18 nodes from the second, and 6 nodes (in the second dataset) from
the third cluster. To account for anomalies, 20 points in four nodes are perturbed by uniform noise from
the interval of [−6, 6]. The scatter plot of the data is shown in Fig. 9.6.

The IBRL dataset—The IBRL Wireless Sensor project [28] consists 54 nodes installed in a large
office environment in March 2004. Each node is equipped with temperature and humidity sensors and
collects measurements at 30 s intervals. Temperature and humidity data of 12 h periods from 8:00 am to
8:00 pm from the first 18 days of March has been extracted from this dataset. In this period, node (#18)

FIGURE 9.6

Scatter plots the IBRL (A) and synthetic (B) datasets.

1739.6 EFFICIENT INCREMENTAL LOCAL MODELING

started to report erroneous data as a result of a systematic problem causing the readings of the nodes to
drift in one direction. Scatter plots for the IBRL and second synthetic dataset are depicted in Fig. 9.6.

Results—The effectiveness of an anomaly detection algorithm can be measured by the number of
false alarms and true alarms. Since in the IBRL dataset there are no predefined labels for anomalous
data, we visually assessed the data and labeled the drift portion and two other data points that fall out-
side of the expected value range, that is, temperature > 50 or humidity > 100, as anomalous. The rest
of the data was treated as normal. For the elliptical clustering we first needed to determine the number
of clusters. As mentioned before, the PRE plot was used to determine the number of clusters. The PRE
plots for the first and second synthetic datasets are plotted in Fig. 9.7. The PRE plot showed two and
three clusters for the first and second synthetic datasets, respectively. Global elliptical boundary(s) for
each algorithm are shown below each PRE plot in Fig. 9.7. As shown in this figure, with the increase
in the number of disjoint distributions in the dataset, the single elliptical boundary lost its capabilities
and covered a large portion of the input space, while the clustering methods were suitable for model-
ing such environments. The ellipsoidal clustering algorithm produced comparable results to that of the
centralized data collection using the k-means algorithm, while significantly reducing the amount of
the data communicated over the network. To quantify this reduction, we count the number of floating
points that each approach needs to communicate over the network to obtain the decision boundaries
at the sink over the second synthetic dataset with 6944 data points spread in the network. In the cen-
tralized approach all the data have to be communicated to the sink and since each data point has two
dimensions, 13,888 floating point numbers should be transmitted over the network. In the distributed
model discussed here, each node sends only the parameters of the local ellipsoid −S n(, m),i i i

1 . In two
dimensions, each ellipsoid can be represented with seven floating points. With 54 nodes in the network,
only 378 floating points have to be sent to the sink. This is approximately a 36-fold reduction in the
amount of data communicated over the network, while maintaining the accuracy in the detection of
anomalies.

In the IBRL dataset the PRE plot suggests four clusters as shown in the last column of Fig. 9.7.
This plot works best when the data can be well separated into clusters. In this case the data, which is
our ellipsoids, are not well separated in the feature space, so the number of suggested clusters was higher
than expected. However, as shown in Fig. 9.7, the ellipsoidal clustering method had a five times lower
false alarm rate than the other two methods. As for the other two methods, they generated almost the
same number of false alarms. This is because in the clustering approach the modeling is initially done at
each node; thus the tails of the overall distribution have been better accounted for in the global model.
When the data are accumulated in one place the density of the data in the tail becomes so small that
many learning algorithm, in this case K-means clustering, sacrifices the tail to get better coverage in the
main body of the distribution. So the discussed distributed framework not only reduces the communica-
tion overload but also can potentially increase the accuracy of the global model.

9.6 EFFICIENT INCREMENTAL LOCAL MODELING
One of the drawbacks of the proposed approach is that its local modeling is performed in batch mode.
Each node has to buffer a window of measurements, then calculates the local ellipsoidal boundary, and
sends it to the sink. The anomaly detection can be done according to both local and global ellipsoids at
the node. However, selecting an appropriate window is known to be a difficult task, as a small window

(Si−1,mi,ni)

174 CHAPTER 9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT

may result in an inaccurate estimate of the local ellipsoid, and the data in a larger window size might not
come from a unimodal distribution, which contradicts the assumption of the model. Another consider-
ation about the batch calculation of the parameters of the local model is the limited computational and
memory capacity of each node. The computational complexity of calculating the parameters of the ellip-
soidal model (especially in low dimensions) is considered to be low, but when done in batch mode can
restrict the function of the node for an extended time. Many current nodes in IoT networks have very

FIGURE 9.7 Evaluation Results for Different Algorithms and Datasets

DR (detection rate) is the percentage of anomalies that have been found, and FPR (false positive rate) is the
percentage of the whole data which is falsely reported as anomalous.

1759.6 EFFICIENT INCREMENTAL LOCAL MODELING

limited memory, which limit the practicality of the batch approach for the computation of the local
model. In this section, we describe an incremental approximation of the batch local ellipsoids that can
address the aforementioned shortcomings of the local batch calculation of the ellipsoidal model. This
approach:

1. does not require a window size;
2. enables the node to have an updated local ellipsoidal boundary at any point in time to potentially

remove anomalies before incorporating them into the model;
3. Breaks down the batch calculation of the ellipsoids to smaller updates after each sample using an

efficient incremental update formula.

9.6.1 INCREMENTAL UPDATES
The parameters of the local ellipsoid at each node Nj at time n −S(, m)j n j n,

1
, can be estimated incremen-

tally (sometimes called “recursively”). Incremental updates for the mean and covariance matrix at Eqs.
(9.2) and (9.3) are (for clarity of exposition we dispense with the index j)

 



= +
−

−
−

n
m m

x m()
n n

n n
1

1

(9.10)

 

 

=
−



 +

− −
−

− −S
n

n
S

n

x m x m1 ()()
n n

n n n n
1

1 1
T

(9.11)

It is fairly simple to prove that (9.2) and (9.10) yield the same mean (ie,
 =m mn n), but (9.11) does

not produce the same matrix as (9.3); rather, it provides an estimate


≈S Sn n . Applying the matrix
identity + = − +− − − − −A A A A Axy xy y x() (/1)T 1 1 1 T 1 T 1 to (9.11) yields

 



 









=
−
−





 −

− −
−

−
+ − −

















−
−

− −
−

− − −
−

− −
−

−

S
n

n
S

S S
n n

n
S

x m x m

x m x m

1

2

()()
()(2)

1
() ()

n n
n n n n n n

n n n n n

1
1

1 1
1

1 1
T

1
1

1
T

1
1

1

(9.12)

Equation (9.12) is the exact inverse of (9.11) and an approximate inverse for the sample covariance
matrix at (9.3), which provides a way to make iterative updates to ellipsoids used to detect anomalies.
The difference between the batch ellipsoids and this approximation is negligible after a small number
of iterations [29]. However, since it is a close approximation of the batch, it is still sensitive to observ-
ing a series of data coming from a multimodal distribution (a mixture model).

One solution to this problem is based on the assumption that the multimodal data stream is fairly
stationary and does not switch between the modes constantly. This is a realistic assumption in many
applications such as monitoring urban air quality where the air quality indicators change with certain
events like rush hour traffic and weather related events. These changes are persistent for an extended
period of time. This assumption allows us to build a more sophisticated incremental model that incor-
porates a forgetting factor to allow a graceful degradation of the influence of inputs collected in the
(distant) past. In this way, the incremental model only becomes inaccurate for a short period of time
after a change while allowing for the effects of the data from the last distribution before the change to
fade from the model.

(Sj,n−1,mj,n)

m∈n=m∈n−1+(xn−m∈n−1)n

S∈n=n−1nS∈n−1+(xn−m∈n−1)(xn−m∈n−1)Tn

m∈n=mn
S∈n≈Sn
(A+xyT)−1=A−1−(A−1xyTA−1/1+yTA−1x)

S∈n−1=n−1n−2S∈n−1−1−S∈n−1−1(xn−m∈n−1)(xn−m∈n−1)TS∈n−1−1(n)(n−2)n−1+(xn−m∈n−1)TS∈n−1−1(xn−m∈n−1)

176 CHAPTER 9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT

Introducing a forgetting factor in the incremental update formulas discussed earlier begins by re-
placing the incremental update for the sample mean at (9.10) with the exponential moving average of
the samples:

0
 λ λ λ= + − ≥λ λ−m m x < < 1; n 3(1) ,n n n, 1, (9.13)

This update weights the sample xn–j observed j times ago by the exponential factor λj. The value of
λ determines how rapidly this sample is effectively “forgotten.” Since λ is less than 1, λj will rapidly
decrease to zero as j increases, so the influence of xn–j will decrease as it becomes further from the cur-
rent input in time. For algorithms with exponential forgetting a value of λ less than 1 and very close to
1 is chosen, typically in the range [0.98, 0.995).

A formula for the update of the inverse of the covariance matrix is introduced in Ref. [30] as shown
in Eqs. (9.14).





 







λ
λ

=
−

−








 −

− −
−

+ − −

















λ
λ λ

λ

λ λ λ

λ
λ λ λ

− −
−

− −
−

− −
−

−

S
n S

n
I

S
n

S

x m x m

x m x m

(1)

(2)

()()
(2)

() ()
n

n n n n n n

n n n n

,
1 1,

1
1, 1,

T
,
1

1,
T

1,
1

1,n

(9.14)

In this formula nλ = max{n,3/(1 – λ)} is called the effective size of the stream.

9.6.2 IMPLEMENTATION OF INCREMENTAL UPDATES
We now discuss some of the implementation details of the incremental algorithm. Similar to any in-
cremental algorithm the values λ λ

−S(, m)n n,
1

, have to be initialized for the first step. We can initialize
these values after the first observation x1 by setting mn,λ = x1 and initialize λ

−Sn ,
1 with the identity matrix

(diagonal matrix with all diagonal values equal to 1). This will result in a hypersphere with x1 as the
center. The incremental formula in Eqs. (9.13) and (9.14) can take over the updates for upcoming
samples. However, initially for the first few samples, the ellipsoidal boundary can potentially change
significantly and are expected to be inaccurate. Therefore, a stabilization period for the incremental
algorithm has to be considered before using the resultant model for anomaly detection. A stabilization
period between 30 and 50 samples has been suggested in the literature [29,30].

There are different ways of incorporating the incremental approach into our distributed framework.
One approach would be for the sink to poll each node for the latest local ellipsoidal boundary at certain
intervals. Then the sink can propagate the global decision boundaries back to the nodes so that each
node in the network has a picture of the whole network. Another approach would require nodes to send
their stabilized local models to the sink at certain intervals or when the nodes deemed it necessary, for
example, when the local decision boundary becomes significantly different than the global models.

Compared to the batch approach, incremental approach allows the nodes to filter anomalies (local
or global) when building a model of the data, thus obtaining a better model of the normal behavior in
the network.

9.6.3 EXPERIMENTAL RESULTS
To demonstrate how the incremental algorithm works at each node, we test the algorithm on two syn-
thetic datasets for detecting local anomalies. These datasets are generated by considering two modes,

m∈n,λ=λm∈n−1,λ+(1−λ)xn, 0<λ<1; n≥3

S∈n,λ−1=(nλ−1)S∈n−1,λ−1λ(nλ−2)I−(xn−m∈n−1,λ)(xn−m∈n−1,λ)TS∈n,λ−1(nλ−2)λ+(xn−m∈n−1,λ)TS∈n−1,λ−1(xn−m∈n−1,λ)

(Sn,λ−1,mn,λ)
Sn,λ−1

1779.6 EFFICIENT INCREMENTAL LOCAL MODELING

M1 and M2, with different normal distributions N(∑1, µ1) and N(∑2, µ2), and nine intermediate modes.
The parameter values of the modes M1 and M2 are shown in Table 9.1. M1 is the initial mode and M2 is
the final mode. M1 is transformed as follows.

First, 500 samples {k = 1,…,500} are drawn from M1. Sampling continues as each individual value
in the covariance matrix and the mean is changed in 10 equal steps. After the first step, 200 samples
{k = 501,…,700} are taken from the new normal distribution. After each new step 200 more samples
are added to the dataset. The final step ends at mode M2. In the first dataset, S1, the steps are much
smaller than the second dataset, S2. In this way, we can examine how the size of the steps affects the
tracking methods. In Fig. 9.8, ellipses with χ= −t ()d

2 2
0.98

1 are shown at M1 and M2 and intermediate steps.
The dots are the data samples. The stars show 1% of the samples at each normal distribution which are
perturbed by a uniform noise from [−10, 10]. These samples are labeled real anomalies, whereas the
rest of the samples are labeled normal. This labeling is used to calculate the detection and false alarm
rates for these data sets.

t2=(χd2)0.98−1

Table 9.1 Parameters of the Two Normal Distributions Used to Generate Synthetic Datasets

S1 S2

M1 Σ = 





0.6797 0.1669
0.1669 0.78911 Σ = 





10.0246 1.2790
1.2790 2.16301

µ1 = (20, 20) µ1 = (45, 42)

M2
Σ = 





0.7089 0.1575
0.1575 0.84722 Σ = 





7.6909 0.6646
0.6646 2.16242

µ2 = (5, 5) µ2 = (5, 5)

O1=0.67970.16690.16690.7891

O1=10.02461.27901.27902.1630
O2=0.70890.15750.15750.8472

O2=7.69090.66460.66462.1624

FIGURE 9.8

Scatter plots of synthetic datasets used for evaluation. (A) S1 and (B) S2.

178 CHAPTER 9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT

We compare the incremental approach with the batch approach in Ref. [8] using the two synthetic
datasets. The detection rate and false alarm rates are shown in Table 9.2. The incremental approach
achieves much better accuracy than the batch method in these datasets which represent nonstationary
environments. This is because the data used for batch learning do not come from a single distribution, so
the assumption of normality is a weak one that results in the inability of the model to detect anomalies.

9.7 SUMMARY
In this chapter, we have presented a framework for distributed anomaly detection in IoT networks,
where the ellipsoidal summaries of the data are sent to a sink where they are clustered to calculate a
set of global ellipsoidal decision boundaries. This approach achieved higher accuracy and significantly
lower complexity than a centralized approach based on clustering the raw data. We further introduced
an incremental learning method to calculate the local ellipsoidal summaries. Four main advantages of
this method over batch calculations are: (1) increasing the independence of the local ellipsoidal model
to the selection of window size; (2) increasing the accuracy of the approach by removing anomalies
from the model calculation; (3) decreasing the delay in detection of anomalies; and (4) reducing mem-
ory and computational requirements at the nodes. We also briefly discussed how the framework can
accommodate the incremental local ellipsoids calculations. Synthetic and real-life datasets are used to
exemplify the use of the discussed methods.

The framework can be improved by using better measures for similarity between ellipsoids for the
purpose of clustering at the sink. Three possible similarity measures for ellipsoids have been discussed
in Ref. [31], which take the shape and orientation of the ellipsoids into consideration, as well as their
separation. We aim to test the framework in specific applications. For specific use of the framework,
application-specific considerations have to be incorporated in the framework, for example, timing and the
number updates to the global decision boundaries and how anomalies at different levels should be dealt
with, that is, whether they should be discarded or reported and how they affect the incremental updates.

REFERENCES
[1] F Bonomi, R Milito, J Zhu, and S Addepalli, Fog computing and its role in the internet of things, In Proceedings of

the first edition of the MCC workshop on Mobile cloud computing (MCC ’12). ACM, New York, NY, 13–16. 2012.
[2] Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv July 2009;41:1–58.

Table 9.2 Comparison of the Anomaly Detection Capability of Incremental vs. Batch Approach
over Two Synthetic Datasets

Dataset

Batch Incremental

Detection (%) False Alert (%) Detection (%) False Alert (%)

S1 55 2.1 96 3.1

S2 29 1 85 3.3

http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0010

179REFERENCES

[3] Djenouri D, Khelladi L, Badache A. A survey of security issues in mobile adhoc and sensor networks. IEEE
Commun Surv Tutor 2005;7(4):2–28.

[4] Rajasegarar S, Leckie C, Palaniswami M. Anomaly detection in wireless sensor networks. IEEE Wireless
Commun 2008;15(4):34–40.

[5] S Subramaniam, T Palpanas, D Papadopoulos, V Kalogeraki, and D Gunopulos, Online outlier detection in
sensor data using nonparametric models, in Proceedings of the Thirty Second International Conference on
Very Large Data Bases, September 2006, pp. 187–198.

[6] Rajasegarar S, Leckie C, Palaniswami M. Detecting data anomalies in wireless sensor networks. Security in
Ad-hoc and Sensor Networks. World Scientific Publishing Inc; July 2009. pp. 231–260.

[7] C. Chong and S Kumar, Sensor networks: evolution, opportunities, and challenges, in Proc IEEE, 91, 2003,
1247–1256.

[8] Rajasegarar S, Bezdek JC, Leckie C, Palaniswami M. Elliptical anomalies in wireless sensor networks. ACM
Trans Sensor Netw (ACM TOSN) 2009;6(1).

[9] S Rajasegarar, C Leckie, and M Palaniswami, CESVM: Centered hyperellipsoidal support vector machine
based anomaly detection, in Proceedings of the IEEE International Conference on Communication, 2008,
pp. 1610–1614.

[10] Rajasegarar S, Leckie C, Palaniswami M, Bezdek J. Distributed anomaly detection in wireless sensor networks.
In: Proceedings of the IEEE International Conference on Communication Systems; October 2006Singapore.
pp. 1–5.

[11] S Rajasegarar, C Leckie, M Palaniswami, and J Bezdek, Quarter sphere based distributed anomaly detection in
wireless sensor networks, in Proceedings of the IEEE International Conference on Communication Systems,
June 2007, pp. 3864–3869.

[12] Ribeiro A, Giannakis GB. Bandwidth-constrained distributed estimation for wireless sensor networks—Part
I: Gaussian case. IEEE Trans Sig Process 2006;54:1131–43.

[13] B Sheng, Q Li, W Mao, and W Jin, Outlier detection in sensor networks, in Proceedings of the Eighth ACM
International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2007, pp. 219–228.

[14] Xiao Z, Chen Z, Deng X. Anomaly detection based on a multi-class CUSUM algorithm for WSN. J Comput
2010;5(2).

[15] M Takruri, S Rajasegarar, S Challa, C Leckie, and M Palaniswami, Online drift correction in wireless sensor
networks using spatio-temporal modeling, in Proceedings of the Eleventh International Conference on
Information Fusion, July 2008, pp. 1–8.

[16] Chandola V, Banerjee A, Kumar V. Anomaly detection for discrete sequences: a survey. IEEE Trans Knowl
Data Eng May 2012;24(5):823–39.

[17] C Panos, C Xenakis, and I Stavrakakis, An evaluation of anomaly-based intrusion detection engines for
mobile ad hoc networks, in Proceedings of the Eighth International Conference on Trust, Privacy and Security
in Digital Business (TrustBus), 2011, pp. 150–160.

[18] Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: a survey. Comput Netw
2002;38(4):393–422.

[19] Bhuse V, Gupta A. Anomaly intrusion detection in wireless sensor networks. J High Speed Netw
2006;15:33–51.

[20] A Meka and AK Singh, Distributed spatial clustering in sensor networks, in Proceedings of the Tenth
International Conference on Extending Database Technology, March 2006, pp. 980–1000.

[21] I Paschalidis and Y Chen, Anomaly detection in sensor networks based on large deviations of Markov chain
models in Proceedings of the IEEE Conference on Decision and Control, 2008, pp. 2338–2343.

[22] L Portnoy, E Eskin, and S Stolfo, Intrusion detection with unlabeled data using clustering, in Proceedings of
ACM CSS Workshop on Data Mining Applied to Security (DMSA), 2001, pp. 5–8.

[23] DM Tax and RP Duin. Data description in subspaces. International Conference on Pattern Recognition,
2:672–675, 2000.

http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0060

180 CHAPTER 9 A FRAMEWORK FOR DISTRIBUTED DATA ANALYSIS FOR IoT

[24] Shepard RN. Toward a universal law of generalization for psychological science. Science 1987;237:1317–23.
[25] Juhasz F. On the characteristic values of non-symmetric block random matrices. J Theor Probab 1990;3(2).
[26] Fallah S, Tritchler D, Beyene J. Estimating number of clusters based on a general similarity matrix with

application to microarray data. Stat Appl Gen Mol Biol 2008;7.
[27] P Kelly, An algorithm for merging hyperellipsoidal clusters, Los Alamos National Laboratory, Los Alamos

National Laboratory, Tech. Rep. LA-UR-94-3306, 1994.
[28] IBRL-Web. 2009, 2006. [Online]. http://db.lcs.mit.edu/labdata/labdata.html
[29] Moshtaghi M, Leckie C, Karunasekera S, Bezdek JC, Rajasegarar S, Palaniswami M. Incremental elliptical

boundary estimation for anomaly detection in wireless sensor networks. In: Proceedings of the Eleventh IEEE
International Conference on Data Mining (ICDM), Vancouver; December 2011Canada. pp. 467–476.

[30] Moshtaghi M, Bezdek JC, Havens TC, Leckie C, Karunasekera S, Rajasegarar S, Palaniswami M. Streaming
analysis in wireless sensor networks. Wireless Commun Mob Comput 2014;14(9):905–21.

[31] Moshtaghi M, Havens TC, Bezdek JC, Park L, Leckie C, Rajasegarar S, Keller JM, Palaniswami M. Clustering
ellipses for anomaly detection. Pattern Recognit 2011;44:55–69.

http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0075
http://db.lcs.mit.edu/labdata/labdata.html
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00009-5/ref0090

PART

10 SECURITY AND PRIVACY IN THE INTERNET OF THINGS 183

11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY 201

12 GOVERNING INTERNET OF THINGS: ISSUES, APPROACHES, AND NEW PARADIGMS 219

13 TinyTO: TWO-WAY AUTHENTICATION FOR CONSTRAINED DEVICES IN THE INTERNET OF THINGS 239

14 OBFUSCATION AND DIVERSIFICATION FOR SECURING THE INTERNET OF THINGS (IoT) 259

IVIoT RELIABILITY,
SECURITY, AND
PRIVACY

Page left intentionally blank

183

CHAPTER

SECURITY AND PRIVACY IN
THE INTERNET OF THINGS

V. Chellappan, K.M. Sivalingam
Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India

10.1 CONCEPTS
The Internet of Things leads to a new computing paradigm. It is the result of shifting computing to our
real-time environment. The IoT devices, besides connecting to the Internet, also need to talk to each
other based on the deployment context. More precisely, IoT is not only about bringing smart objects
to the Internet, but also enabling them to talk to each other. This will have direct implications to our
life, and change the way we live, learn, and work. Thus, it provides a huge opportunity for hackers to
compromise security and privacy. Note that we should not only secure IoT systems from dangers that
might attack it over the public Internet, but also protect a coopting device or well-behaved node from
a bad node in the same network.

Today, we have reasonably secure and safe online financial transactions, e-commerce, and other
services over the Internet. Core to these systems is the use of advanced cryptographic algorithms that
require substantial computing power. Smart objects have limited capabilities in terms of computational
power and memory, and might be battery-powered devices, thus raising the need to adopt energy-
efficient technologies. Among the notable challenges that building interconnected smart objects intro-
duces are security, privacy, and trust. The use of Internet Protocol (IP) has been foreseen as the stan-
dard for interoperability for smart objects. As billions of smart objects are expected to come to life and
IPv4 addresses have eventually reached depletion, the IPv6 protocol has been identified as a candidate
for smart-object communication. The challenges that must be overcome to resolve IoT security and
privacy issues are immense. This is primarily because of the many constraints attached to the provision
of security and privacy in IoT systems. The deployment of the IoT raises many security issues arising
as a result of the following aspects:

• the very nature of smart objects, for example, the adoption of lightweight cryptographic
algorithms, in terms of processing and memory requirements

• the use of standard protocols, for example, the need to minimize the amount of data exchanged
between nodes

• the bidirectional flow of information, for example, the need to build an end-to-end security
architecture.

This chapter provides a detailed overview of the security challenges related to the deployment of
smart objects. Security protocols at the network, transport, and application layers are discussed, together

10

184 CHAPTER 10 SECURITY AND PRIVACY

with lightweight cryptographic algorithms to be used instead of conventional and demanding ones, in
terms of computational resources. Security aspects, such as key distribution and security bootstrapping,
and application scenarios, such as secure data aggregation and service authorization, are also discussed.

10.1.1 IoT REFERENCE MODEL
Today, there is no standardized conceptual model that characterizes and standardizes the various func-
tions of an IoT system. Cisco Systems Inc. has proposed an IoT reference model [1] that comprises
seven levels. The IoT reference model allows the processing occurring at each level to range from
trivial to complex, depending on the situation. The model also describes how tasks at each level should
be handled to maintain simplicity, allow high scalability, and ensure supportability. Finally, the model
defines the functions required for an IoT system to be complete. The seven levels and their brief char-
acteristics are shown in Table 10.1. The fundamental idea is to present a level of abstraction and ap-
propriate functional interfaces to provide a complete system of IoT. It is the coherence of an end-to-end
IoT architecture that allows one to process volume of context specific data points, make meaningful
information, manage intrinsic feature of large scale, and ultimately design insightful responses.

The important design factor is that IoT should leverage existing Internet communication infrastruc-
ture and protocols. Level 3 is famously referred to as Edge Computing or Fog Computing. The primary
function is to transform data into information, and perform limited data-level analytics. Context-
specific information processing is done at this level so that we obtain actionable data. An important
feature of fog computing is its capability of real time processing and computing. More precisely, levels
1, 2, and 3 are concerned with data in motion, and the higher levels are concerned with information
derived from the data items. It leads to an unprecedented value zone wherein people and the processes
are empowered to take meaningful action from the underneath world of IoT. The core objective is to
automate most of the manual processes, and empower people to do their work better and smarter.

At each level of the reference model, the increasing number of entities, heterogeneity, interoperability,
complexity, mobility, and distribution of entities represent an expanding attack surface, measurable by
additional channels, methods, actors, and data items. Further, this expansion will necessarily increase
the field of security stakeholders and introduce new manageability challenges that are unique to the IoT.

Table 10.1 IoT World Forum Reference Model

IoT Reference Model

Levels Characteristics

Physical devices and controllers End point devices, exponential growth, diverse

Connectivity Reliable, timely transmission, switching, and routing

Edge computing Transform data into information, actionable data

Data accumulation Data storage, persistent and transient data

Data abstraction Semantics of data, data integrity to application, data standardization

Application Meaningful interpretations and actions of data

Collaboration and processes People, process, empowerment, and collaboration

18510.1 CONCEPTS

10.1.2 IoT SECURITY THREATS
There are three broad categories of threats: Capture, Disrupt, and Manipulate. Capture threats are
related to capturing the system or information. Disrupt threats are related to denying, destroying, and
disrupting the system. Manipulate threats are related to manipulating the data, identity, time-series
data, etc. The simplest type of passive threats in the IoT is that of eavesdropping or monitoring of
transmissions with a goal to obtain information that is being transmitted. It is also referred to as capture
attacks. Capture attacks are designed to gain control of physical or logical systems or to gain access to
information or data items from these systems. The ubiquity and physical distribution of the IoT objects
and systems provide attackers with great opportunity to gain control of these systems. The distribution
of smart objects, sensors, and systems results in self-advertisements, beacons, and mesh communica-
tions, providing attackers greater opportunity to intercept or intercede in information transmission
within the environment. Moreover, the frequency of the data transmissions, data models, and formats
help attackers in cryptanalysis.

Some of the well-known active threats are as follows: Masquerading: an entity pretends to be a dif-
ferent entity. This includes masquerading other objects, sensors, and users. Man-in-the-middle: when
the attacker secretly relays and possibly alters the communication between two entities that believe
that they are directly communicating with each other. Replay attacks: when an intruder sends some old
(authentic) messages to the receiver. In the case of a broadcast link or beacon, access to previous trans-
mitted data is easy. Denial-of-Service (DoS) attacks: when an entity fails to perform its proper function
or acts in a way that prevents other entities from performing their proper functions.

Active threats such as masquerading, replay attacks, DoS attacks are, in general, comparatively
easy in an IoT environment. One example is the implementation of cloned beacons from an untrusted
source. Beacons are small wireless devices that continuously transmit a simple radio signal saying, “I
am here, this is my ID.” In most cases, the signal is picked up by nearby smartphones using Bluetooth
Low Energy (BLE) technology. When the mobile device detects the beacon signal, it reads the bea-
con’s identification number (ID), calculates the distance to the beacon and, based on these data, trig-
gers an action in a beacon compatible mobile app. In the literature [2], the IoT threats are enumerated
as cloning of smart objects by untrusted manufacturers, counterfeiting/substitution of the IoT devices
by the third parties, malicious firmware replacement, and attacks on relatively unprotected devices by
eavesdropping or extraction of credentials or security properties, in addition to the standard threat vec-
tors such Man-in-the-middle and DoS attacks. The security and privacy requirements are determined
by the nature of attacks in an IoT environment.

10.1.3 IoT SECURITY REQUIREMENTS
This section presents an overview on the security requirements of the IoT. The basic security prop-
erties that need to be implemented in IoT are listed next. Confidentiality: transmitted data can be
read only by the communication endpoints; availability: the communication endpoints can always
be reached and cannot be made inaccessible; integrity: received data are not tampered with during
transmission, and assured of the accuracy and completeness over its entire lifecycle; authenticity: data
sender can always be verified and data receivers cannot be spoofed and authorization: data can be ac-
cessed only by those allowed to do so and should be made unavailable to others. The requirements for
securing the IoT are complex, involving a blend of approaches from mobile and cloud architectures,
combined with industrial control, automation, and physical security. Many of the security requirements

186 CHAPTER 10 SECURITY AND PRIVACY

for the IoT are similar to the requirements for the IP protocol-based Internet. The technologies and
services that have been used to secure the Internet are applicable in most cases with suitable adaptation
required at each level of the IoT reference model. Besides the standard security requirements, and from
the threats discussed, the following security requirements can be derived.

10.1.3.1 Scale
The important requirement is the scale in which an IoT environment is expected to grow. The popula-
tion of entities is expected to grow exponentially as users embrace more smart and connected objects
and devices, more sensors are deployed, and more objects are embedded with intelligence and informa-
tion. Each entity, depending on its nature, characteristics, carries with it an associated set of protocols,
channels, methods, data models, and data items, each of which is subject to potential threat. This in-
creased scale has the effect of expanding the target surface. As noted earlier, the scale and complexity
at each level of the IoT model determine the amount of compute and storage requirements, and hence
the cost and power budget. The trade-off between cost and resources determines the availability of
resources for system security, cryptographic algorithms, key size, and methods.

10.1.3.2 IP Protocol-Based IoT
The use of IP technologies in IoT brings a number of basic advantages such as a seamless and homo-
geneous protocol suite, and proven security architecture. It also simplifies the mechanisms to develop
and deploy innovative services by extending the tested IP-based frameworks. It leads to a phenomenon
called “expansion of attack surface.” It implies that when we connect the previously unconnected—by
introducing new devices that stream context sensitive data, by placing data in mobile cloud, or by
pushing computing to edge devices—new points of ingress for security threats inevitably materialize.
As the networks of smart objects and IP merge, there is a high probability of security vulnerabilities
due to protocol translations, incompatible security infrastructures, etc. The enterprise security model
has been marked by two chief tenets:

• Security has been focused on best-of-breed applications and appliances: solutions for firewall, for
network security, for data security, for content security, and so forth.

• Security has been perimeter-based, meaning organizations secured the end device and the server,
and reacted to recognized intrusions or threats such as viruses or DoS attacks.

In the context of IoT, perimeter-based security mechanisms have little relevance. The attack surface
is much broader, often borderless, and involves heterogeneous systems.

10.1.3.3 Heterogeneous IoT
Another important design consideration in the IoT is how the connected things can work together to
create value and deliver innovative solutions and services. IoT can be a double-edged sword. Although
it provides a potential solution to the innovation imperative, it can also significantly boost operational
complexity if not properly integrated with key organizational processes. Security processes should also
be properly designed to align with the organization processes. The complex operational technologies
make it difficult for designing a robust security architecture in IoT. It is a common opinion that in the
near future IP will be the base common network protocol for IoT. This does not imply that all objects
will be able to run IP. In contrast, there will always be tiny devices, such as tiny sensors or Radio-
Frequency Identification (RFID) tags, that will be organized in closed networks implementing very

18710.1 CONCEPTS

simple and application-specific communication protocols and that eventually will be connected to an
external network through a proper gateway. In short, the heterogeneous characteristics of the networks
make it harder to implement certain IP-based security systems such as symmetric cryptosystems.

10.1.3.4 Lightweight Security
The unprecedented value of IoT is realized only when smart objects of different characteristics interact
with each other and also with back-end or cloud services. IPv6 and web services become the funda-
mental building blocks of IoT systems and applications. In constrained networked scenarios, smart
objects may require additional protocols and some protocol adaptations in order to optimize Internet
communications and lower memory, computational, and power requirements. The use of IP technolo-
gies in IoT brings a number of basic advantages such as a seamless and homogeneous protocol suite,
and proven security architecture. It also simplifies the mechanisms to develop and deploy innovative
services by extending the tested IP-based frameworks. However, it also introduces new challenges in
adopting certain frameworks as is. The IoT provides interconnectedness of people and things on a vast
scale with billions of devices. It is at once a huge opportunity for better efficiency and better services,
as well as a huge opportunity for hackers to compromise security and privacy.

It may be noted that one of the key elements of the state-of-the-art security in the Internet is the use
of advanced cryptographic algorithms needing substantial processing power. Many, if not most, IoT
devices are based on low-end processors or microcontrollers that have low processing power and mem-
ory, and are not designed with security as a priority design goal. Privacy enforced through encryption,
authentication to conform identity, and Information authentication by using digitally signed certificates
are the key security mechanisms in the Internet today. These mechanisms rely on the following:

• Cryptographic ciphers such as Advanced Encryption Standard (AES), Secure Hash Algorithm
(SHA2), and the public-key ciphers RSA and elliptic-curve cryptography (ECC).

• Transport Layer Security (TLS) protocol, and predecessor Secure Sockets Layer (SSL) protocol,
which provide authentication and information encryption using the ciphers mentioned.

• Public-Key Infrastructure (PKI) provides the building blocks for authentication and trust through
a digital certificate standard and Certificate Authorities (CA).

Current IoT implementations have gaps in terms of implementing the above security mechanisms,
even though these mechanisms have widespread adoption in the IP networks. For example, there are
multiple commercial and open-source TLS implementations that can be adopted in an IoT device.
These libraries typically consume more than 100 KB of code and data memory, which is not a lot for
a conventional computing device, but is impractical for an IoT device such as a medical sensor. The
cryptographic ciphers used by the TLS protocol are a source of significant computational load on the
low end CPU of the typical IoT device. This computational load results in higher power consumption
as well. For example, the data rate supported by a 32 bit MCU implementing AES-128 may fall from
3 Mbps to 900 Kbps if the MCU is substituted with a 16 bit processor. Note that this in turn leads to in-
direct effects like longer active time, more power drain, and a shorter battery life. Essentially the chal-
lenge is to make the resource constrained IoT networks interoperate with the resourceful IP networks.

The current principles of IT security need to be deconstructed by reevaluating and redesigning protocols,
algorithms, and processes in light of the evolving IoT architecture. More precisely, network scale, heteroge-
neous, power constraints, and mobility alter the attack surface on a much larger scale and in greater breadth.
It necessitates reinvention and adaption of IP-based protocols and introduction of IoT specific protocols.

188 CHAPTER 10 SECURITY AND PRIVACY

10.2 IoT SECURITY OVERVIEW
This section presents necessary background on the IoT control protocols such as ZigBee, IPv6 over
Low-power WPAN (6LoWPAN), Constrained RESTful Environments (CoRE), CoAP, and security
protocols such as IKEv2/IPSec, TLS/SSL, Datagram Transport Layer Security (DTLS), Host Identity
Protocol (HIP), Protocol for Carrying Authentication for Network Access (PANA), and Extensible
Authentication Protocol (EAP). It also discusses the key concepts on IoT security that includes identity
management, authentication, authorization, privacy, trust, and governance for IoT networks. The tax-
onomy of security attacks, threats, and security mechanisms is presented in Table 10.2.

10.2.1 IoT PROTOCOLS
Bonetto et al. [3] discussed the security procedures for constrained IoT devices with use cases. It starts
with the description of general security architecture along with its basic procedures, and then discusses
how its elements interact with the constrained communication stack and explores pros and cons of
popular security approaches at various layers of the ISO/OSI model. Similarly, the applicability and
limitations of existing Internet protocols and security architectures in the context of IoT are discussed
in Ref. [4]. It gives an overview of the deployment model and general security needs. It presents the
challenges and requirements for IP-based security solutions and highlight specific technical limita-
tions of standard IP security protocols (IPSec). There are currently IETF working groups focusing on
extending existing protocols for resource-constrained networked environments. These are: CoRE [5],
6LoWPAN [6–8], Routing Over Low power and Lossy networks (ROLL) [9], and the Light-Weight
Implementation Guidance (LWIG) working groups. Significant reasons for proper protocol optimiza-
tions and adaptations for resource-constrained objects are targeted toward protocol compression to fit
into smaller Maximum Transmission Units (MTU), thereby reducing power consumption with smaller
packets, elimination of fragmentation, and reducing the handshake messages. A typical IoT layer for a
Bluetooth smart enabled device protocol stack is shown in Table 10.3

Table 10.2 Security Mechanisms to Mitigate the Threats in the IoT Networks

Threats/Security
Mechanism Data Privacy

Data
Freshness

Source
Authentication

Data
Integrity

Intrusion
Detection

Identity
Protection

Capture

Physical systems X

Information X X X

Disrupt

DoS Attack X X X

Routing attack X

Manipulate

Masquerading X X X X

Replay attack X X X X

Man-in-the-middle X X X

18910.2 IoT SECURITY OVERVIEW

IPv6 significantly expands the number of available IP addresses for use by providing 2128 addresses.
This means that, if necessary, every device can have its own unique IPv6 address. Standards such as
6LoWPAN have made it possible to integrate sensors in a transport agnostic manner. 6LoWPAN en-
ables sensors to talk to IP Protocols natively. Furthermore, new application layer protocols such as
CoAP and Message Queue Telemetry Transport (MQTT) [10] ensure optimal use of bandwidth and
resources of constrained IoT devices. Bluetooth Smart is an open standard that is specifically designed
for the needs of battery powered sensors and wearables. Now powered with the 6LoWPAN IETF draft,
Bluetooth Smart is well placed to address evolving needs of sensors connecting to the cloud without
the need for intelligent gateways. The Internet Protocol Service Profile (IPSP) defines establishing and
managing the Bluetooth logical link control and adaptation protocol (L2CAP) connection oriented
channel. IPSP and Bluetooth Smart 6LoWPAN standard ensures optimal IP stack performance over
Bluetooth Smart as a physical layer. 6LoWPAN defines the creation of an IPv6 address of a device
from its Bluetooth Smart device address. It also compresses the IP header where possible to ensure
optimal use of RF bandwidth for power saving purposes.

A static profile of an IoT object represents the knowledge by an endpoint of its own resources (such
as identity, battery, computing power, memory size, etc.) and the security settings it intends to use or
needs from the network. The static profile can be read-only (preset by vendor), write-once (set by man-
ufacturer), or rewritable (user enabled). Note that certain security primitives may be computationally
prohibitive for IoT objects; a negotiation is thus required before the establishment of a secure channel
so that the concerned endpoints can agree upon a cryptographic suite.

10.2.2 NETWORK AND TRANSPORT LAYER CHALLENGES
The IPSec [11] uses the concept of a Security Association (SA), defined as the set of algorithms and
parameters (such as keys) used to encrypt and authenticate a particular flow in one direction. To es-
tablish a SA, IPSec can be preconfigured (specifying a preshared key, hash function, and encryption
algorithm) or can be dynamically negotiated by the IPSec Internet Key Exchange (IKE) protocol. The
IKE protocol uses asymmetric cryptography, which is computationally heavy for resource-constrained
devices. To address this issue, IKE extensions using lighter algorithms should be used. Data overhead
is another problem for IPSec implementations in IoT environments. This is introduced by the extra
header encapsulation of IPSec AH and/or Encapsulating Security Payload (ESP) [12], and can be miti-
gated by using header compression.

CoAP proposes to use the DTLS protocol [13] to provide end-to-end security in IoT systems. The
DTLS protocol provides a security service similar to TLS, but on top of UDP. This is highly suitable for
IoT environments due to its usage of UDP as transport protocol. This results in avoidance of problems

Table 10.3 Bluetooth Smart Device Protocol Stack

Application layer CoAP MQTT

Transport layer UDP TCP

Network layer IPv6 ICMPv6 RPL

Adaptation layer Bluetooth Smart 6LoWPAN

Physical and link layer IPSP

190 CHAPTER 10 SECURITY AND PRIVACY

from the use of TCP in network-constrained scenarios that are caused due to the extremely variable
transmission delay and loss links. DTLS is a heavyweight protocol and its headers are too long to fit
in a single IEEE 802.15.4 MTU. 6LoWPAN provides header compression mechanisms to reduce the
size of upper layer headers. 6LoWPAN header compression mechanisms can be used to compress
the security headers as well. Raza et al. [14] proposed a new 6LoWPAN header compression algorithm
for DTLS is proposed. It links the compressed DTLS with the 6LoWPAN standard using standardized
mechanisms. It is shown that the proposed DTLS compression significantly reduces the number of ad-
ditional security bits. Kothmayr et al. [15] introduced a two-way authentication security scheme for the
IoT based on DTLS. The proposed security scheme is based on the widely used public-key based RSA
cryptography protocol and works on top of standard low power communication stacks.

10.2.3 IoT GATEWAYS AND SECURITY
Connectivity is one of the important challenges in designing the IoT network. The diversity of end points
makes it very difficult to provide IP connectivity. It is important that non-IP devices too have a mecha-
nism to connect with IoT. The IoT gateways can simplify IoT device design by supporting the different
ways nodes natively connect, whether this is a varying voltage from a raw sensor, a stream of data over
an inner integrated circuit (I2C) from an encoder, or periodic updates from an appliance via Bluetooth.
Gateways effectively mitigate the great variety and diversity of devices by consolidating data from dis-
parate sources and interfaces and bridging them to the Internet. The result is that individual nodes do not
need to bear the complexity or cost of a high-speed Internet interface in order to be connected. There are
several ways that an IoT gateway can extend connectivity to nodes as described below.

• The network nodes connect to the IoT via a gateway. The nodes themselves are not IP-based
and thus cannot directly connect to the Internet/WAN. Rather, they use either wired or wireless
PAN technology to connect to the gateway with a less expensive and less complex mode of
connectivity. The gateway maintains an IoT agent for each node that manages all data to and from
nodes. In this case, application intelligence can also be located in the gateway.

• The nodes can also connect directly to the Internet using a WAN connection such as Wi-Fi or
Ethernet. The gateway serves primarily as a router; in fact, it can be simply a router when nodes
have their own IoT agent and autonomously manage themselves.

• Alternatively, the nodes can connect directly to the Internet using a PAN connection such as
6LoWPAN. In this case, the gateway serves as a translation point between the PAN and WAN.

Many IoT applications handle potentially sensitive data. Data collected from location services, for
example, need to be protected from hacking. Similarly, medical devices need to maintain the privacy
of individuals. In the context of the IoT gateway architecture, the security processing and mechanisms
can be offloaded from nodes to the gateway to ensure proper authentication, protecting exchanges of
data, and safeguarding intellectual property. This enables IoT nodes to implement greater security than
could be economically implemented in individual end points.

10.2.4 IoT ROUTING ATTACKS
Threats arising due to the physical nature of IoT devices can be mitigated by appropriate physical secu-
rity safeguards, whereas secure communication protocols and cryptographic algorithms are the only way
of coping with the fact that they arise due to IoT devices communicating with each other and the external
world. For the later, IoT devices can either run the standard TCP/IP protocol stack, if their computational

19110.2 IoT SECURITY OVERVIEW

and power resources allow, or can run adaptions which are optimized for lower computational and power
consumption. There are some well-known routing attacks that can be exploited by attackers. The 6LoW-
PAN networks or an IP-connected sensor networks are connected to the conventional Internet using
6LoWPAN Border Routers (6LBR). The Routing Protocol for Low-Power and Lossy Networks (RPL)
[9] is a novel routing protocol standardized for 6LoWPAN networks. RPL creates a destination-oriented
directed acyclic graph (DODAG) between the nodes in a 6LoWPAN. It supports unidirectional traffic
toward DODAG root and bidirectional traffic between 6LoWPAN devices and between devices and the
DODAG root (typically the 6LBR). RPL enables each node in the network to determine whether packets
are to be forwarded upwards to their parents or downwards to their children.

Attacks on sensor networks that are applicable to IoT are discussed in Refs. [16,17]. Some well-
known routing attacks on IoT are as follows:

• Selective-forwarding attacks
• Sinkhole attacks
• Hello flood attacks
• Wormhole attacks
• Clone Id and Sybil attacks

With selective-forwarding attacks, it is possible to launch DoS attacks where malicious nodes selectively
forward packets. This attack is primarily targeted to disrupt routing paths. For example, an attacker could
forward all RPL control messages and drop the rest of the traffic. This attack has severer consequences
when coupled with other attacks such as sinkhole attacks. One of the solutions to guard against selective-
forwarding attacks is to create disjoint paths between the source and the destination nodes. Another effec-
tive countermeasure against selective-forwarding attacks is to make sure the attacker cannot distinguish
between different types of traffic, thus forcing the attacker to either forward all traffic or none.

In sinkhole attacks, a malicious node advertises a fraudulent routing path with a seemingly favor-
able route metric and attracts many nearby nodes to route traffic through it. An intrusion detection
system could be hosted in the 6LBR and can utilize information from multiple DODAGs to detect
sinkhole attacks.

In the hello-flood attack, The HELLO message refers to the initial message a node sends when join-
ing a network. By broadcasting a HELLO message with strong signal power and a favorable routing
metric, an attacker can introduce himself as a neighbor to many nodes, possibly the entire network. A
simple solution to this attack is for each HELLO message the link is checked to be bidirectional.

A wormhole is an out-of-band connection between two nodes using wired or wireless links. Worm-
holes can be used to forward packets faster than via normal paths. A wormhole created by an attacker
and combined with another attacks, such as sinkhole, is a serious security threat. One approach is to use
separate link-layer keys for different segments of the network. This can counteract the wormhole at-
tack, as no communication will be possible between nodes in two separate segments. Also, by binding
geographic information to the neighborhoods it is possible to overcome a wormhole.

In a clone-ID attack, an attacker copies the identities of a valid node onto another physical node. This
can, for example, be used in order to gain access to a larger part of the network or in order to overcome vot-
ing schemes. In a Sybil attack, which is similar to a clone ID attack, an attacker uses several logical entities
on the same physical node. Sybil attacks can be used to take control over large parts of a network without
deploying physical nodes. By keeping track of the number of instances of each identity it is possible to
detect cloned identities. It would also be possible to detect cloned identities by knowing the geographical
location of the nodes, as no identity should be able to be at several places at the same time.

192 CHAPTER 10 SECURITY AND PRIVACY

10.2.5 BOOTSTRAPPING AND AUTHENTICATION
Bootstrapping and authentication controls the network entry of nodes. Authentication is highly relevant
to IoT and is likely to be the first operation carried out by a node when it joins a new network, for in-
stance, after mobility. It is performed with a (generally remote) authentication server using a network
access protocol such as the PANA [18]. For greater interoperability, the use of the EAP [19] is envi-
sioned. Upon successful authentication, higher layer security associations could also be established
(such as IKE followed by IPSec [20]) and launched between the newly authenticated endpoint and the
access control agent in the associated network.

The Internet Key Exchange (IKEv2)/IPSec and the HIP [21] reside at or above the network layer.
Both protocols are able to perform an authenticated key exchange and set up the IPSec transforms for
secure payload delivery. Currently, there are also ongoing efforts to create a HIP variant called Diet
HIP [22] that takes loss low-power networks into account at the authentication and key exchange level.

10.2.6 AUTHORIZATION MECHANISMS
The present day services that run over the Internet, such as popular social media applications, have
faced and handled privacy-related problems when dealing with personal and protected data that might
be made accessible to third parties. In the future, the IoT applications will face similar issues, and
others that may be unique to the domain. The OAuth (Open Authorization) protocol has been defined
to solve the problem of allowing authorized third parties to access personal user data [23]. OAuth2.0
[24] is an authorization framework that allows a third party to access a resource owned by a resource
owner without giving unencrypted credentials to the third party. For example, assume that a health-
care sensor or mobile app wants to access a Facebook profile to post status updates. There is no need
to provide the Facebook credentials to the app; instead, the user logs into Facebook, and as a result
the app is authorized to use Facebook on the user’s behalf. The user can also revoke this authoriza-
tion any time by deleting the privilege in the Facebook settings. The OAuth 2.0 protocol defines the
following four roles.

10.2.6.1 Resource Owner
It is an entity capable of granting access to a protected resource. When the resource owner is a person,
it is referred to as an end user. In the above example, this could be the end user of the healthcare device.

10.2.6.2 Resource Server (Service Provider, SP)
It is the server hosting the protected resources, capable of accepting and responding to protected re-
source requests using access tokens. In the example, this is the Facebook server.

10.2.6.3 Client (Service Consumer, SC)
It is the application making protected resource requests on behalf of the resource owner and with its au-
thorization. The term client does not imply any particular implementation characteristics (eg, whether
the application executes on a server, a desktop, or other devices). In this case, it is the healthcare sensor
or mobile application.

10.2.6.4 Authorization Server
It is the server issuing access tokens to the client after successfully authenticating the resource owner
and obtaining authorization. In this example, it would be the Facebook authorization server.

19310.3 SECURITY FRAMEWORKS FOR IoT

10.2.7 IoT OAS
Note that the IoT devices may have challenges in implementation of OAuth due to the CPU intensive
nature of cryptographic computations. Cirani et al. [25] proposed a modified architecture called IoT-
OAS. In this approach, authorization-related functions are delegated to an external IoT-OAS authori-
zation service, in order to minimize the memory and CPU requirements on the IoT device itself. An
incoming OAuth secured request is forwarded to an IoT-OAS service for verification of the access
token contained in the request. The IoT-OAS service computes the digital signature of the incoming
request using the appropriate scheme (PLAINTEXT/HMAC/RSA) and matches it with its internal
store to verify the user and client credentials and permissions for resource access. It then provides an
appropriate response back allowing or denying the requested access from the client. This approach
enables the IoT device to focus on its own service logic and frees up computational resources from be-
ing overwhelmed by security and cryptographic implementations. The security protocols at each layer
between different networks are shown in Fig. 10.1.

10.3 SECURITY FRAMEWORKS FOR IoT
In this section, we discuss some of the specific frameworks used for realizing a secure IoT system. The
low capabilities of IoT devices in terms of their energy and computing capabilities, wireless nature,
and physical vulnerability are discussed to be the contributing factors to some unique security vulner-
abilities. In particular, we cover the tight resource constraints, protocol translation such as HTTP ↔
CoAP, and end-to-end Security. Other important topics include the architecture framework aspects:
Distributed vs Centralized approach, bootstrapping identity and key interchange, privacy aware identi-
fication, mobility, and IP network dynamics.

In the era of pervasive computing with large networks of resource constrained IoT devices, Moore’s
law can be interpreted differently [26]: rather than a doubling of performance, we see a halving of the

FIGURE 10.1 An Overview of IoT and IP Security Protocols

194 CHAPTER 10 SECURITY AND PRIVACY

price for constant computing power every 18 months. Since many foreseen applications have extreme-
ly tight cost constraints over time, such as RFID in tetra packs, Moore’s law will increasingly enable
such applications. Many applications will process sensitive health monitoring or biometric data, so
the demand for cryptographic components that can be efficiently implemented is strong and growing.

10.3.1 LIGHT WEIGHT CRYPTOGRAPHY
The term lightweight cryptography refers to a family of cryptographic algorithms with smaller foot-
print, low energy consumption, and low computational power needs. Every designer of lightweight
cryptography must cope with the trade-offs between security, cost, and performance. It is generally
easy to optimize any two of the three design goals: security and cost, security and performance, or cost
and performance; however, it is very difficult to optimize all three design goals at once.

When we compare lightweight cryptographic implementations, we can make a distinction between
symmetric and asymmetric ciphers. Symmetric ciphers serve mainly for message integrity checks, en-
tity authentication, and encryption, whereas asymmetric ciphers additionally provide key-management
advantages and nonrepudiation. Asymmetric ciphers are computationally far more demanding, in both
hardware and software. The performance gap on constrained devices such as 8-bit microcontrollers is
huge. For example, an optimized asymmetric algorithm such as ECC performs 100–1000 times more
slowly than a standard symmetric cipher such as the AES algorithm, which correlates with a two to
three orders of-magnitude higher power consumption [26].

Symmetric-key cryptographic algorithms use the same key for encryption of a plain text and de-
cryption of a message. The encryption key represents a shared secret between the parties that are in-
volved in the secure communication.

10.3.1.1 Symmetric-Key LWC Algorithms
• The Tiny Encryption Algorithm (TEA) is a block cipher renowned for its simplicity of description

and implementation, typically a few lines of code [27]. TEA operates on two 32-bit unsigned
integers (could be derived from a 64-bit data block) and uses a 128-bit key. TEA relies only on
arithmetic operations on 32-bit words and uses only addition, XORing, and shifts. For IoT devices
with small memory footprints, TEA is very suitable since its algorithm uses a large number of
iterations, rather than a complicated program, in order to avoid preset tables and long setup times.
TEA defines a simple and short cipher that does not rely on preset tables or precomputations, thus
saving on memory resources.

• The Scalable Encryption Algorithm (SEA) is targeted for small embedded applications [28]. The
design explicitly accounts for an environment with very limited processing resources and
throughput requirements. A design principle of SEA is flexibility: the plaintext size n, key size n,
and processor (or word) size b are design parameters, with the only constraint that n is a multiple
of 6b; for this reason, the algorithm is denoted as SEAn;b. The main disadvantage is that SEAn;b
trades space for time and this may not be trivial on devices with limited computational power.

• PRESENT is an ultra-lightweight block cipher algorithm based on a Substitution-Permutation
Network (SPN) [29]. PRESENT has been designed to be extremely compact and efficient in
hardware. It operates on 64-bit blocks and with keys of either 80 or 128 bits. It is for use in
situations where low-power consumption and high chip efficiency are desired, thus making it of
particular interest for constrained environments.

• The HIGh security and lightweigHT (HIGHT) [30] encryption algorithm is a generalized Feistel
network with a block size of 64 bits, 128-bit keys, and 32 rounds. HIGHT was designed with

19510.3 PRIVACY IN IoT NETWORKS

an eye on low-resource hardware performance. HIGHT uses very simple operations, such as
XORing, addition mod 28, and bitwise rotation.

10.3.2 ASYMMETRIC LWC ALGORITHMS
Public-key (asymmetric) cryptography requires the use of a public-key and a private key. Public
keys can be associated with the identity of a node by including them into a public certificate, signed
by a Certification Authority (CA) that can be requested to verify the certificate. Public-key cryp-
tography requires the significant effort of deploying a PKI. Moreover, asymmetric cryptography
requires higher processing and long keys (at least 1024 bits for RSA [31]) to be used. Alternative
public-key cryptographic schemes, such as ECC [32], might require shorter keys to be used in order
to achieve the same security than RSA keys. However, because of these reasons, symmetric cryp-
tography is preferred in terms of processing speed, computational effort, and size of transmitted
messages. Public key can be used to setup symmetric keys to be used in subsequent communica-
tions. Lightweight cryptography algorithms are suitable for environments that do not have stringent
security requirements and where the constraints on available hardware and power budget cannot
be relaxed.

10.3.3 KEY AGREEMENT, DISTRIBUTION, AND BOOTSTRAPPING
A mechanism for key distribution and management has to be in place when security mechanisms have
to be adopted. Asymmetric (public-key) cryptographic algorithms are usually used in key agreement
protocols. However, other mechanisms that do not involve the adoption of asymmetric cryptography
have been proposed, to address the challenges of resource-constrained devices. A polynomial-based
key predistribution protocol has been defined [33] and applied to Wireless Sensor Networks in Ref.
[34]. A possible alternative key agreement protocol is SPINS [35], which is a security architecture
specifically designed for sensor networks. In SPINS, each sensor node shares a secret key with a base
station, which is used as a trusted third party to set up a new key, with no need of public-key cryptog-
raphy. The authors of Ref. [36] present three efficient random key predistribution schemes for solving
the security-bootstrapping problem in resource-constrained sensor networks, each of which represents
a different tradeoff in the design space of random key protocols.

10.3.3.1 Security Bootstrapping
The key agreement protocols require that some type of credentials such as symmetric keys, certificates,
and public–private key pairs are preconfigured on the nodes, so that the key agreement procedure can
occur. Bootstrapping refers to the sequence of tasks that need to be executed before the network can in-
terwork, requiring the correct configuration at all layers of the OSI model from link layer to application
layer. It can be viewed as a process of creating a security domain from a set of previously unassociated
IoT devices. Current IoT architectures are fully centralized in most cases, so that a central party handles
all the security relationships in an administrative domain. In the ZigBee standard, this entity is the trust
center. Current proposals for 6LoWPAN/Core identify the 6LoWPAN Border Router (6LBR) as such
an entity. A centralized architecture allows for central management of devices and key associations.
The limitation is that there is a single point of failure; a decentralized approach will allow creating
ad-hoc security domains that might not require a centralized online management entity and will allow
subsets of nodes to work in a stand-alone manner. The ad-hoc security domains can be synced to cen-
tralized entity later, allowing for both centralized and distributed management.

196 CHAPTER 10 SECURITY AND PRIVACY

10.4 PRIVACY IN IoT NETWORKS
This section discusses the privacy aspects and frameworks relevant to IoT. The smart, connected ob-
jects will interact with both humans and other smart objects by providing, processing, and delivering all
sorts of information and signals. All of these objects and their communications with the environment
carry with them a risk to privacy and information leakage. Healthcare applications represent the most
outstanding application of IoT. The lack of confidence regarding privacy results in decreased adoption
among users and is therefore one of the driving factors in the success of IoT. The ubiquitous adoption
of the wireless medium for exchanging data may pose new issue in terms of privacy violation. In fact,
wireless channel increases the risk of violation due to the remote access capabilities, which potentially
expose the system to eavesdropping and masking attacks.

IoT devices and applications add a layer of complexity over the generic issue of privacy over the
Internet, for example due to generation of traceable characteristics and attributes of individuals. IoT
devices in healthcare present a major concern, since these devices and applications typically generate
large volumes of data on individual patients through continuous monitoring of vital parameters. In this
case, it is crucial to delink the identities of the device from that of the individual, through mechanisms
such as data anonymization. Data anonymization is the process of either encrypting or removing per-
sonally identifiable information from data sets, so that the originator of the data remains anonymous.
Similar to the preceding discussion of the OAuth protocol, digital shadows enable the individual’s
objects to act on their behalf, storing just a virtual identity that contains information about their pa-
rameters. Identity management in IoT may offer new opportunities to increase security by combining
diverse authentication methods for humans and machines. For example, bio-identification combined
with an object within the personal network could be used to open a door.

10.4.1 SECURE DATA AGGREGATION
Homomorphic encryption is a form of encryption that allows specific types of computations to be ex-
ecuted on cipher texts and obtain an encrypted result that is the cipher text of the result of operations
performed on the plain text. Applying the standard encryption methods presents a dilemma: If the data
is stored unencrypted, it can reveal sensitive information to the storage/database service provider. On
the other hand, if it is encrypted, it is impossible for the provider to operate on it. If data are encrypted,
then answering even a simple counting query (for example, the number of records or files that contain
a certain keyword) would typically require downloading and decrypting the entire database content.

A homomorphic encryption allows a user to manipulate without needing to decrypt it first. An example
of homomorphic encryption is the RSA algorithm. Other examples of homomorphic encryption schemes are
the ECC encryption [32], the ElGamal cryptosystem [37], and the Pailler cryptosystem [38]. Homomorphic
encryption has a lot of relevance to IoT networks, since privacy can be preserved at all stages of the commu-
nication, especially without the need for intermediate nodes to decrypt the information. For example, a lot
of processing and storage can be eliminated at intermediate nodes by data aggregation with operations such
as sums and averages. This in turn results in lower power consumption, which is relevant for constrained
environments. However, note that this type of homomorphic cryptosystems is more compute-intensive and
needs longer keys to achieve a comparable security level than typical symmetric-key algorithms.

Typically, secure data aggregation mechanisms require nodes to perform the following operations [2]:

• at the transmitting node, prior to transmission, data are encrypted with some cryptographic
function E

19710.4 PRIVACY IN IoT NETWORKS

• at the receiving node, all received data packets are decrypted with the inverse cryptographic
function D = E−1 to retrieve the original data;

• data are aggregated with an aggregation function;
• prior to retransmission, aggregated data are encrypted through E and relayed to the next hop.

10.4.2 ENIGMA
MIT Researchers, Guy Zyskind and Oz Nathan, have recently announced a project dubbed Enigma
that makes a major conceptual step toward this Holy Grail of a fully homomorphic encryption proto-
col. Zyskind, et al. [39] proposed a peer-to-peer network, enabling different parties to jointly store and
run computations on data while keeping the data completely private. Enigma’s computational model
is based on a highly optimized version of secure multiparty computation, guaranteed by a verifiable
secret-sharing scheme. For storage, it uses a modified distributed hash table for holding secret-shared
data. An external block chain is utilized as the controller of the network, manages access control,
identities, and serves as a tamper-proof log of events. Security deposits and fees incentivize operation,
correctness, and fairness of the system. Similar to Bitcoin, Enigma removes the need for a trusted third
party, enabling autonomous control of personal data. For the first time, users are able to share their data
with cryptographic guarantees regarding their privacy.

The typical use case of Enigma would be for interactions between hospitals and health-care provid-
ers who store encrypted patient data as per HIPAA regulations. Research organizations and pharma-
ceutical companies would benefit from access to these data for clinical analysis. For example, a hospi-
tal can encrypt its data and store it in the cloud, where potentially other universities, pharma companies,
and insurance companies could access it with permission from the originating hospital. With the usage
of Enigma, note that there is no need for the originating hospital to first decrypt and anonymize the
data, it only needs to authorize the third party for access.

10.4.3 ZERO KNOWLEDGE PROTOCOLS
Zero-knowledge protocols allow identification, key exchange and other basic cryptographic operations
to be implemented without leaking any secret information during the conversation and with smaller
computational requirements than using comparable public-key protocols. Thus Zero-knowledge proto-
cols seem very attractive especially in the context of IoT networks, especially for some applications like
smart cards. Zero-knowledge protocols have been claimed to have lighter computational requirements
than, for example, public-key protocols. The usual claim is that zero-knowledge protocols can achieve
the same results than public-key protocols with one to two orders of magnitude less (1/10, 1/100) com-
puting power. A typical implementation might require 20–30 modular multiplications (with full-length
bit strings) that can be optimized to 10–20 with precalculation. This is much faster than RSA. The mem-
ory requirements seem to be about equal: to have very high security with zero-knowledge protocols, we
need very long keys and numbers, so in memory terms, the requirements may not be very different [40].

10.4.4 PRIVACY IN BEACONS
Beacon in wireless technology is the concept of broadcasting small pieces of information. The infor-
mation may be anything, ranging from ambient data to vital signs such as body temperature, blood
pressure, pulse, and breathing rate or microlocation data such as asset tracking. Based on the context,
the transmitted data maybe static or dynamic and change over time. The Bluetooth beacon opens a new

198 CHAPTER 10 SECURITY AND PRIVACY

world of possibilities for location awareness, and countless opportunities for smart applications. Bea-
cons are becoming one of the key enablers of the IoT. One kind of beacon is a low energy Bluetooth
transmitter or receiver. The power efficiency of Bluetooth Smart makes it perfect for devices needing
to run off a tiny battery for long periods. The advantage of Bluetooth Smart is its compatibility to work
with an application on the smartphone or tablet you already own. An important use case of beacons is
to obtain context-specific observations and repeated measurements over time. Most data collected from
beacons are correlated in time, which might cause serious threats to data security and user privacy.

Security and privacy issues specific to beacons and time series data transmitted from them are
emerging areas of research interest. There are both advantages and disadvantages of security based on
the difficulty of an underlying computation problem and information theoretic security, which is based
on lack of information content. A more basic measure of the information-theoretic security is the inher-
ent information available for exploitation by an adversary, independent of how the adversary exploits
it or indeed any assumed computational limitations of the adversary. In Ref. [41], a new measure of
information theoretic measure such as conditional entropy is shown to be suited for evaluating the pri-
vacy of perturbed real-world time-series data, compared with other existing measures.

Much of the research and study of privacy issues in ubiquitous computing systems is applicable
to the IoT. Establishing meaningful identity, using trusted communication paths, and protecting con-
textual information is all very important to ensure the protection of user privacy in this environment.
Beresford and Stajano [42] have explored anonymous communication techniques and the use of pseud-
onyms to protect user privacy while also working on metrics to assess user anonymity. Their work
takes a novel approach by hiding identity from the applications that utilize it in order to better protect
the user consuming those services.

In their work on Decentralized Trust Management, Zhao et al. [43] propose new technologies that
enable the bootstrapping of trust, and subsequently, the calculation of trust metrics that are better suited
to mobile, ad-hoc networks. Their model showcases the inherent problems with establishing trust in
ad-hoc networks like those in the IoT where new sensors, services, and users are constantly introduced
and asked to share data.

Finally, applications in the IoT, which will be enabled by a ubiquitous computing and communica-
tions infrastructure, will provide unobtrusive access to important contextual information as it pertains
to users and their environment. Clearly, the successful deployment of such applications will depend on
our ability to secure them and the contextual data that they share.

One example of sensitive contextual information is location. When location-aware systems track
users automatically, an enormous amount of potentially sensitive information is generated and made
available. Privacy of location information is about both controlling access to the information and pro-
viding the appropriate level of granularity to individual requestors. The Location Services Handbook
[44] explores a variety of location-sensing technologies for cellular networks and the coverage quality
and privacy protections that come with each.

10.5 SUMMARY AND CONCLUSIONS
The IoT brings to the fore issues on privacy that were seen as less impactful on the World Wide Web.
For example, people have been sharing personal profile information on Social media sites such as Face-
book, and this in turn enables the business model of these applications through targeted advertising

199REFERENCES

in lieu of subscriptions. This context has meant that the privacy issues are largely ignored. However,
the smart IoT devices expose much more sensitive information, and provide much less scope for this
type of commercial model as it is largely back-end data. Hence users are likely to be both vulnerable
and sensitive to privacy concerns. These challenges make it very complex to operationalize IoT in a
secure way, while fully preserving privacy. There are a number of promising approaches that are being
investigated to solve for each aspect of the privacy issues, and there is still some distance to go before
we can see production ready commercial implementations that are standardized and widely adopted.

REFERENCES
[1] Green J. IoT reference model. http://www.iotwf.com/resources/72; 2014.
[2] Cirani S, Ferrari G, Veltri L. Enforcing security mechanisms in the IP-based Internet of Things: an algorithmic

overview. Algorithms 2013;6(2):197–226.
[3] Bonetto R, Bui N, Lakkundi V, Olivereau A, Serbanati A, Rossi M. Secure communication for smart IoT

objects: protocol stacks, use cases and practical examples. In: IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), San Francisco; 2012. p. 1–7.

[4] Heer T, Garcia-Morchon O, Hummen R, Keoh S, Kumar S, Wehrle K. Security challenges in the IP-based
Internet of Things. Wirel. Pers Commun 2011;61(3):527–42.

[5] Shelby Z. Constrained restful environments (CoRE) link format. RFC 6690, RFC Editor; 2012.
[6] Montenegro G, Kushalnagar N, Hui J, Culler D. Transmission of IPv6 packets over IEEE 802.15.4 networks.

RFC 4944, RFC Editor; 2007.
[7] Hui J, Thubert P. Compression format for IPv6 datagrams over IEEE 802.15.4 based networks. RFC 6282,

RFC Editor; 2011.
[8] Shelby Z, Chakrabarti S, Nordmark E, Bormann C. Neighbor discovery optimization for IPv6 over low-

power wireless personal area networks (6loWPANs). RFC 6775, RFC Editor; 2012.
[9] Winter T, Thubert P, Brandt A, Hui J, Kelsey R, Levis P, Pister K, Struik R, Vasseur J, Alexander R. RPL: IPv6

routing protocol for low-power and lossy networks. RFC 6550, RFC Editor; 2012.
[10] Hunkeler U, Truong HL, Stanford-Clark A. In: Choi S, Kurose J, Ramamritham K, editors. Mqtt-s—a publish/

subscribe protocol for wireless sensor networks. IEEE COMSWARE; 2008. p. 791–8.
[11] Kent S, Seo K. Security architecture for the Internet protocol. RFC 4301, RFC Editor; 2005.
[12] Kent S. IP encapsulating security payload (ESP). RFC 4303, RFC Editor; 2005.
[13] Rescorla E, Modadugu N. Datagram transport layer security version 1.2, RFC 6347, RFC Editor; 2012.
[14] Raza S, Trabalza D, Voigt T. 6loWPAN compressed DTLS for CoAP. In: Eighth IEEE Distributed Computing

in Sensor Systems (DCOSS), Hangzhou, China; 2012. p. 287–89.
[15] Kothmayr T, Schmitt C, Hu W, Brunig M, Carle G. A DTLS based end-to-end security architecture for the

Internet of Things with two-way authentication. In: Thirty Seventh IEEE Conference on Local Computer
Networks Workshops, FL; 2012. p. 956–63.

[16] Karlof C, Wagner D. Secure routing in wireless sensor networks: attacks and countermeasures. Ad Hoc Netw
2003;1(2):293–315.

[17] Wallgren L, Raza S, Voigt T. Routing attacks and countermeasures in the RPL-based Internet of Things. Int
J Distr Sensor Netw 2013;2013:11.

[18] Forsberg D, Ohba Y, Patil B, Tschofenig H, Yegin A. Protocol for carrying authentication for network access
(PANA). RFC 5191, RFC Editor; 2008.

[19] Aboba B, Blunk L, Vollbrecht J, Carlson J, Levkowetz H. Extensible Authentication Protocol (EAP). RFC
3748, RFC Editor; 2004.

[20] Frankel S, Krishnan S. IP security (IPSec) and internet key exchange (like) document roadmap. RFC 6071,
RFC Editor; 2011.

http://www.iotwf.com/resources/72
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0030

200 CHAPTER 10 SECURITY AND PRIVACY

[21] Moskowitz R, Nikander P, Jokela P, Henderson T. Host Identity Protocol. RFC 5201, RFC Editor; 2008.
[22] Chan H, Perrig A, Song D. Random key predistribution schemes for sensor networks. In: Proceedings of the

IEEE Symposium on Security and Privacy, Oakland; 2003. p. 197–213.
[23] Hammer-Lahav E. The OAuth 1.0 protocol. RFC 5849, RFC Editor; 2010.
[24] Hardt D. The OAuth 2.0 authorization framework. RFC 6749, RFC Editor; 2012.
[25] Cirani S, Picone M, Gonizzi P, Veltri L, Ferrari G. IoT-OAS: an OAuth-based authorization service architecture

for secure services in IoT scenarios. IEEE Sens J 2015;15(2):1224–34.
[26] Eisenbarth T, Kumar S. A survey of lightweight-cryptography implementations. IEEE Des Test Comput

2007;24(6):522–33.
[27] Wheeler DJ, Needham RM. TEA, A tiny encryption algorithm. Proceedings of fast software encryption,

2nd internation workshop, vol. 1008. Leuven, Belgium; 1995. p. 363–66.
[28] Standaert F-X, Piret G, Gershenfeld N, Quisquater J-J. SEA: A scalable encryption algorithm for small

embedded applications. Proceedings of 7th IFIP WG 8.8/11.2 international conference, CARDIS 2006.
Tarragona, Spain; 2006. p. 222–36.

[29] Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A, Robshaw MJ, Seurin Y, Vikkelsoe C.
PRESENT: An ultra-lightweight block cipher. Proceedings of 9th international workshop. Vienna, Austria;
2007. p. 450–66.

[30] Hong D, Sung J, Hong S, Lim J, Lee S, Koo B-S, Lee C, Chang D, Lee J, Jeong K, et al. Hight: a new block
cipher suitable for low-resource device. Cryptographic hardware and embedded systems. Springer; 2006.
p. 46–59.

[31] Rivest RL, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems.
Commun ACM 1978;21(2):120–6.

[32] Koblitz N. Elliptic curve cryptosystems. Math Comput 1987;48(177):203–9.
[33] Blundo C, De Santis A, Herzberg A, Kutten S, Vaccaro U, Yung M. Perfectly-secure key distribution for

dynamic conferences. Inform Comput 1998;146(1):471–86.
[34] Liu D, Ning P, Li R. Establishing pairwise keys in distributed sensor networks. ACM Trans Inform Syst Secur

2005;8(1):41–77.
[35] Perrig R, Szewczyk JD, Tygar V, Wen DE, Culler. SPINS: security protocols for sensor networks. Wirel Netw

2002;8(5):521–34.
[36] Chan H, Perrig A, Song D. Random key predistribution schemes for sensor networks. In: IEEE Symposium

on Security and Privacy; 2003. p. 197–213.
[37] ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. Advances in

cryptology. Proceedings of CRYPTO 84. Santa Barbara, USA; 1984. p. 10–18.
[38] Paillier P. Public-key cryptosystems based on composite degree residuosity classes. In: Advances in

Cryptology—EUROCRYPT’99. Springer; 1999. p. 223–38.
[39] Zyskind G, Nathan O, Pentland A. Enigma: decentralized computation platform with guaranteed privacy.

CoRR, abs/1506.03471; 2015.
[40] Aronsson HA. Zero knowledge protocols and small systems. http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/

zeroknowledge.html; 2015.
[41] Ma CY, Yau DK. On information-theoretic measures for quantifying privacy protection of time-series data.

In: Proceedings of the Tenth ACM Symposium on Information, Computer and Communications Security.
New York: ACM; 2015. p. 427–38.

[42] Beresford AR, Stajano F. Location privacy in pervasive computing. IEEE Pervasive Computing; 2003;2(1):
46–55.

[43] Zhao Meiyuan, Li Hong, Wouhaybi Rita, Walker Jesse, Lortz Vic, Covington Michael J. Decentralized trust
management for securing community networks. Intel Technol J 2009;13(2):148–69.

[44] Martin E, Liu L, Covington M, Pesti P, Weber M. Chapter: 1 Positioning technology in location-based
services. In: Ahson SA, Ilyas M, editors. Location based services handbook: applications, technologies, and
security. CRC Press; 2010.

http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0090
http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/zeroknowledge.html
http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/zeroknowledge.html
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00010-1/ref0105

201

CHAPTER

INTERNET OF THINGS—
ROBUSTNESS AND
RELIABILITY

S. Sarkar
Department of CSIS, Birla Institute of Technology and Science Pilani, K.K.Birla Goa Campus, Goa, India

11.1 INTRODUCTION
Building a reliable computing system has always been an important requirement for the business and
the scientific community. By the term reliability, we mean how long a system can operate without
any failure. Along with reliability, there is another closely related quality attribute, called availability.
Informally, availability is the percentage of time that a system is operational to the user. An internet of
things (IoT) system deploys a massive number of network aware devices in a dynamic, error-prone, and
unpredictable environment, and is expected to run for a long time without failure. To commission such
a system and to keep it operational, it is therefore essential that the system is designed to be reliable and
available. Let us understand these two attributes in detail.

Since the exact time of a failure of any operational system is not known a priori, it is appropriate to
model the time for a system to fail as a (continuous) random variable. Let f(t) be the failure probability
density function, which denotes the instantaneous likelihood that the system fails at time t. Next, we
would like to know the probability that the system will fail within a time t, denoted by F(t). Let T be the
time for the system to fail. The function ∫= ≤ =F t T t f u du() Pr{ } ()

t

0
, also known as the failure function,

is the cumulative probability distribution of T. Given this distribution function, we can predict the pos-
sibility of a system failing within a time interval (a,b] to be ∫< ≤ = = −a T b f t dt F b F aPr{ } () () ()

a

b

. The
reliability of a system R(t) can be formally defined as the probability that the system will not fail till the
time t. It is expressed as R(t) = Pr{T > t}= 1−F(t).

The mean time to failure (MTTF) for the system is the expected value E[T] of the failure density

function = ∫
∞

tf t dt()
0

 which can rewritten as ∫∫− ′ = − +∞ ∞∞
tR t dt tR t R t dt() [()] ()0 00

When t approaches ∞, it can be shown that tR(t) tends to 0. Therefore, MTTF, which intuitively is
the long-run average time to failure, is expressed as: ∫ τ τ

∞
R d()

0

With this MTTF value, availability A can be computed as: =
+

A
MTTF

MTTF MTTR
 where MTTR de-

notes the average time the system takes to be operational again after a failure. Thus, the definition of
availability takes reliability also into account.

Availability has been one of the most important quality attributes to measure the extent of uninter-
rupted service that a distributed and more recently a cloud-based system provides. It has also been an
important metric to define the service level agreement (SLA) between the service provider (a SaaS or
an IaaS provider) and the service consumer.

F(t)=Pr{T≤t}=∫0tf(u)du

Pr{a<T≤b}=∫abf(t)dt=F(b)−F(a)

∫0∞tf(t)dt−∫0∞tR9(t)dt=−[tR(t)]0∞+∫0∞R(t)dt

∫0∞R(τ)dτ
A=MTTFMTTF+MTTR

11

202 CHAPTER 11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY

From the definition, it is obvious that a system which is highly reliable (high MTTF) will tend to
be highly available as well. However, the mean time to recover or MTTR brings another alternative
means to achieve high availability. One can design a highly available system even with components
having relatively poor reliability (not very large MTTF), provided that the system takes a very little
time to recover when it fails. Although the hardware industry has always strived to make the infrastruc-
ture reliable (ie, increase MTTF), today it has possibly reached its limit. Increasing MTTF beyond a
certain point is extremely costly, and sometimes impossible. In view of this, it becomes quite relevant
to design a system equipped with faster recovery mechanismsa. This observation has led to the emer-
gence of recovery oriented computing (ROC) [20] paradigm, which has now been considered to be a
more cost-effective approach to ensure the service continuity for distributed and cloud-based systems.
The fundamental principle of ROC is to make MTTR as small as possible. For an IoT-based system,
the participating components can have high failure possibilities. In order to ensure that an IoT system
always remains operational, the ROC becomes an attractive and feasible approach.

Along with reliability and availability, the term serviceability coined by IBM (https://en.wikipedia.
org/wiki/Serviceability_(computer)) is frequently used to indicate the ease with which the deployed
system can be repaired and brought back to operation. Thus, serviceability implies reduction of the
MTTR using various failure-prevention methods (prediction, preventive maintenance), failure detec-
tion techniques (through monitoring), and failure handling approaches (by masking the impact of an
error, recovery). The goal of serviceability is obviously to have a zero repair time, thereby achieving a
near 100% availability.

In the remainder of this chapter we will discuss suitable serviceability techniques to improve the
reliability and availability of IoT systems.

11.2 IoT CHARACTERISTICS AND RELIABILITY ISSUES
With the advancement in infrastructure and wireless communication, proliferation of new communica-
tion aware devices of various form factors, and with the introduction of cloud computing paradigm,
Internet of Things-based applications are emerging [1,4,6,7,14]. Such an application, distributed on
multitude of devices, is more embedded into the business environment than ever before. For instance,
smart, network accessible cameras can be placed at strategic locations in a cluster of buildings or on
streets, smart meters may be installed in a power-grid, tiny embedded devices can be used for health
monitoring, vehicles in a city can be equipped with GPS-based sensors, and static wireless sensors can
be embedded in modern appliances like a television or a refrigerator. These network-enabled devices
can run distributed processes, which in turn can coordinate, exchange data, and take critical decisions
in real time. Such a system is expected to be deployed once and be operational forever.

11.2.1 IoT ARCHITECTURE IN BRIEF
Though there is no consensus of what the standard architecture of an IoT-based system should be, we
find a general adoption of the following IoT architecture reference model shown in Fig. 11.1

aThe High Cost of Achieving Higher Levels of Availability—Gartner Report G0099122, June 2001.

https://en.wikipedia.org/wiki/Serviceability_(computer)
https://en.wikipedia.org/wiki/Serviceability_(computer)

20311.2 IoT CHARACTERISTICS AND RELIABILITY ISSUES

Device layer: The lowest layer in Fig. 11.1 consists of devices with a low to moderate compute and
communication capability. These devices are typically battery operated, and can execute tiny OS like
RIOT [17] or Contiki. They typically receive data from the environment, perform local processing on
the data, and then transmit the result.

Communication layer: The devices transmit data through WIFI, GSM/GPRS, Bluetooth, and radio
frequency for RFID-enabled devices [5]. The communication layer comprises devices (routers, signal
transceivers, etc.) that are responsible for reliable transmission of data.

Application layer: In this layer, an IoT middleware resides, with which the devices interact to ex-
change data. We refer to this middleware as the “service platform” in this chapter. The service platform
can be hosted on the cloud to exploit the on-demand and scalable infrastructure capability of the cloud.
In order to make the application layer flexible and extendible, well-known architecture patterns like
hub and spoke, microkernel, and blackboard-based design can be adopted. The smart devices can join
the network on-demand, and the platform, acting as a hub, processes a massive amount of data from
the network of devices. On top of this middleware, the IoT specific application can reside which can
perform various on and offline tasks which can be low-latency real-time responses or heavy-duty data-
analysis activities [10]. Such an approach is beneficial from two perspectives. For the cloud, the overall
reach of the system becomes far more deep as the real-world devices get embedded in the application
domain. For the devices, their limited compute and storage capabilities are compensated by virtually
unlimited resources in the cloud, and the cloud becomes a point of convergence for the devices [52].

11.2.1.1 Different Categories of Applications
We can classify IoT applications into the following categories from reliability and availability perspective:

11.2.1.1.1 Zero tolerance
When an IoT system is placed in a mission critical scenario, specifically in the health care domain,
where network aware devices monitor the health of the patient, or a network-enabled pacemaker device
that interacts with a larger health-care platform, the system components do not tolerate any failure

FIGURE 11.1 Layered Architecture Reference Model

204 CHAPTER 11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY

during its mission time (when it is actively working). In other words, the MTTF (which impacts reli-
ability) for these components should be strictly greater than the mission time. Furthermore, the MTTR
for such a system should be close to zero during the mission time.

11.2.1.1.2 Restartable
Here the IoT system can tolerate a faulty component or event the entire system (though undesirable) to
restart without any catastrophic impact. For instance, an IoT system for urban transport, having com-
ponents embedded in vehicles, can afford to restart, if the embedded component fails. Here, more than
MTTF being high, the goal is to make MTTR as small as possible.

11.2.1.1.3 Error Tolerant
Here the nature of the application is such that a part of the system can tolerate the erroneous input
for some time, within the user-defined safety limit before getting it fixed. For instance, an unmanned
surveillance system providing real-time routine information of an agricultural land, can afford to send
poor/incorrect data before it is rectified. Similarly, a recommendation system of the next generation e-
commerce system reading a real-time input data-feed can accept erroneous data (and obviously gener-
ate erroneous recommendations) for a small time before the error conditions are rectified.

11.2.2 FAILURE SCENARIOS
Like any mission critical system, we say that an IoT-based system becomes unreliable or unavailable
when the system either fails to respond to a request or provides an unexpected, incorrect service [28].
A service failure happens when faults are not handled properly. Researchers and practitioners have
extensively studied various faults and remedial actions to keep software operational in a business criti-
cal scenario. Broadly, these faults are categorized as (i) development fault (ii) infrastructure fault, and
(iii) interaction faults. Development faults are induced by incorrect implementation of the software,
whereas infrastructure faults are caused due to unanticipated faults in the hardware. Interaction faults
occur due to interaction with other software modules or incorrect data format. Let us analyze how they
are relevant in the IoT context.

11.2.2.1 Infrastructure Fault
The cluster of network-enabled devices in an IoT-based system are expected to operate in unanticipated
scenarios. Some of these scenarios can lead to infrastructure failures. For instance:

1. In a given IoT application scenario, the network-enabled devices ought to be embedded in a
specific environment to gather and process data stream. The devices can fail due to the physical
condition and interference with the environment in which they operate. Such an operating
condition can reduce the life of such devices drastically due to the physical deterioration.
Consider the scenario of electronic tracking of animals [2,26,27], which is an important business
problem in Norway. The sensor attached on an animal has an extremely high chance of a failure,
resulting in poor or erroneous data transmission, or a complete data loss. This may not result in an
imminent failure of the service platform but it can certainly lead to corruption of data, incorrect
interpretation, and an eventual failure of service.

2. The external environment may provide unexpected inputs to IoT entities resulting in a
computation failure in the device.

205

3. The processors of these devices have been designed keeping a small form-factor in mind rather
than making them highly fault-tolerant. Thus these devices can be much more fault-prone than a
normal computer.

4. Many a times these devices run on a battery which can severely limit their compute time and can
cause unexpected termination of a computation.

The overall reliability and availability of the system will obviously depend on the extent to which
these devices can withstand these unexpected scenarios.

11.2.2.2 Interaction Fault
Network-enabled devices and appliances have widely varying compute capabilities. When these de-
vices are made to communicate with each other and share data, there can be operational failures due
to several reasons:

1. The entire network or the communication components can fail. Consider the same scenario
of electronic tracking of animals [2,26,27]. Now consider a likely situation where the GPRS
backbone fails in the IoT system that is supposed to be used to report the animal tracking data.
Such an event can certainly impact the overall system functionality.

2. Due to the heterogeneity of the devices, there could be an “impedance mismatch” of the data
being exchanged. Such a scenario can occur when the IoT system allows a device to join the
network in real time. An example of such a scenario is the management of vehicular network in a
city where the vehicles joining dynamically may not comply with the protocol. In such a situation,
it will not be possible to interpret the data and take the appropriate action.

3. Interaction faults are also caused by unexpected workload coming from various IoT components.

11.2.2.3 Fault in Service Platform
Consider the architecture reference model shown in Fig. 11.1 where the service platform acts as a
hub that collects data from various network aware sensor objects and processes the data. It is unlikely
that the platform will be built from the scratch. It will integrate many third party products and will be
integrated with external partner systems. Even if we assume that this middleware has been thoroughly
tested for its own functionality, many transient faults can be due to off-the-shelf components. The reli-
ability of these third party components may be questionable and can often be a cause of failure of the
main system. Additionally, the external partner systems of the IoT application middleware can fail or
provide incorrect data, which can result in a failure of the middleware. When the platform fails due to
these faults, it will not be able to process the incoming messages and route them.

11.2.3 RELIABILITY CHALLENGES
11.2.3.1 Making Service Available to User
The aim of an IoT application is to provide an immersive service experience through a tightly coupled
human–device interaction in real time. Therefore, it is highly important that the availability of the sys-
tem be judged from the user perspective. This is known as “user perceived availability” [21] where the
perceived availability is about delivering the service to the user, not just surviving through a failure.
A relatively old study on Windows server [22] shows that though the server was available for 99% of
the time (obtained from the server log), but the user perceived it to be just 92%. To improve the user

11.2 IoT CHARACTERISTICS AND RELIABILITY ISSUES

206 CHAPTER 11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY

perceived availability, the IoT service platform has an important role to play where it needs to ensure
that the user service requests (coming from the application layer on top of the middleware as shown in
Fig. 11.1) are always responded to even in extreme circumstances.

11.2.3.2 Serviceability of IoT System
We discussed earlier that it is quite likely for an IoT system to have a set of devices that can dynami-
cally come and join the system. In such a case, ensuring serviceability without disrupting the ongoing
activities is more difficult in the case of IoT devices. In a traditional high-available system, nodes as
well as the software running on them go through a scheduled maintenance when the software and
patches are upgraded to prevent any upcoming failure. Such a traditional maintenance may not be fea-
sible for an IoT system. For instance, a device is located in a mission critical location where one cannot
simply perform a shutdown (for instance, smart healthcare devices like network aware pacemaker).
The devices may operate on a relatively low network bandwidth and on a limited battery power where
over-the-wire large data (such as a software patch) transmission may not be practical all the time. For
this reason, the software, protocols, and applications that are created in the IoT framework need to be
tested not only for functionality, and traditional nonfunctional features, but also for their fault-tolerance
so that it can remain operational for a longer duration without any repair.

11.2.3.3 Reliability at Network Level
Most Internet of Things applications for buildings, factories, hospitals, or the power grid are long-term
investments that must also be operable for a long time. The networks can also be unmanaged (eg, home
automation, transport applications). This implies that the network must be able to configure itself as en-
vironmental conditions or components in the network itself change so that the information can always be
transmitted from one application to the other reliably. There can be further complexities in using sensor
devices. The links used in most sensor networks today use completely unregulated bands of frequency. As a
result, it is very easy that the signals from a sensor device interfere with another and make the links unreli-
able. For instance, if a newly deployed IoT sensor network starts using the same channel as someone’s exist-
ing WLAN access point, the interference can disable critical sensor data reporting. Links in sensor networks
are often more unreliable than the Internet due to the lack of regulation. Therefore, it is highly desirable to
have some form of reliable transport protocol for IoT that is as power-saving as UDP and as reliable as TCP.

11.2.3.4 Device Level Reliability
From the network level, let us now focus on the embedded devices that are connected via network.
Even when the network is reliable, there are scenarios when the applications running on these devices
may generate poor quality data, which makes the entire computation unreliable. Consider a scenario
when the device needs to gather image from the physical world where it is embedded. Due to the envi-
ronmental condition, the quality of the images captured can be below the acceptable level; as a result
the associated inferences drawn from the captured images become unreliable. For sensor devices, the
environmental condition can result in a bit error.

Computing devices are now being deployed in medical monitoring and diagnostic systems. Such
a system that not only performs monitoring but also provides recommendation to the physicians, is
safety critical. Similarly devices used in fire safety scenarios need to be zero tolerant (as we have men-
tioned earlier) [2]. However, a sensor device embedded in a fire alarm system also has a high chance
of malfunctioning during the critical time. The reliability challenge in this case is to ensure the timely

207

diagnosis and alert generation during the critical time, even when some part of the system (for instance,
the fire sensor) malfunctions or sends poor quality information. The security threats of these safety
critical systems can adversely impact reliability to a large extent.

Smart mobile phones of today have a good amount of computing capability, and they are becoming
an intrinsic part of IoT applications. The study by Cinque et al. [23] shows that for cell-phone-based
communication, it is the inexpensive and power constrained mobile phone that poses the reliability
challenges than the communication infrastructure.

11.2.4 PRIVACY AND RELIABILITY
Data privacy is an important part of IoT, specifically when an IoT system allows a machine-to-machine
interaction, where machines can join the network dynamically [3]. In this context, identity manage-
ment, and proving identity on-demand has been considered an important mechanism to ensure the au-
thenticity of the communicating parties [11]. For instance consider an IoT-based vehicle management
system, which expects vehicles to reveal their identity in a vehicular network. The system can create
an alarm and can trigger actions if the deployed sensors on a street sense that a car has not revealed the
identity. However, this alarm can be a false one if the car is a police car, which can reveal its identity
to another police car and to the designated staff at the police station, but keep its identity hidden during
undercover work otherwise. Under such a scenario, the real-time surveillance system’s reliability of
detecting intrusion becomes questionable due to the inaccuracy. In this chapter we refrain from dis-
cussing detailed issues related to identity preservation, anonymization, and use of pseudonyms (using
alternate identity) since they strictly belong to the security. Interested readers can refer to the recently
established car-to-car consortiumb and the work by Papadimitratos et al. [54] for further details.

11.2.5 INTEROPERABILITY OF DEVICES
Since IoT allows heterogeneity of devices interacting with each other, there is always a possibility that
the participating devices cannot exchange information due to the lack of standardization. As of today,
the standardization of the communication among the devices has not been enforced in IoT. In the article
from Telenor group [12] the interoperability issues of communicating devices in the context of IoT
have been discussed in detail. Traditionally, system reliability is often associated with various other
quality attributes like performance, availability, and security. Interoperability, an important quality at-
tribute by itself, has not traditionally been considered in conjunction with reliability. However, with the
emergence of IoT, we now find that if an IoT infrastructure has devices that are not interoperable, and
if the IoT system requires that the devices can come and join dynamically, the overall reliability of the
infrastructure to perform the intended service is bound to suffer significantly unless the dynamically
participating devices are interoperable.

11.2.6 RELIABILITY ISSUES DUE TO ENERGY CONSTRAINT
Autonomous devices of an IoT system such as automated surveillance system need to collect and pro-
cess data in real time from the environment for a long duration. The data stream is transmitted from
a set of embedded sensors, which are running on battery power. Even in an ideal scenario, when the
environmental condition does not interfere with the functioning of the sensors, the reliability of the

11.2 IoT CHARACTERISTICS AND RELIABILITY ISSUES

bCar-to-Car Communication Consortium (C2C-CC) http://www.car-2-car.org/

http://www.car-2-car.org/

208 CHAPTER 11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY

overall system can still be impacted due to the limited power supply. It is therefore essential that the IoT
infrastructure ensures both reliability and low energy consumption [also referred to as energy efficient
reliability (EER) in the literature] [13].

11.3 ADDRESSING RELIABILITY
Traditionally, the designers of a reliable system take the approach of either fault prevention or fault-
tolerance to ensure reliability and availability. To prevent a failure, proactive actions are taken to stop
the imminent failure of a running system. In the case of an IoT-based system, prevention many a times
becomes quite difficult, as there are many unanticipated external as well as transient faults due to rea-
sons often beyond the realm of our control. Fault-tolerance on the other hand implies that the system
is able to operate in the presence of faults. Fault-tolerance is achieved mainly through nullifying the
impact of an error (also known as error masking), error detection, and recovery. The system can nullify
the impact of an error mostly through employing a set of redundant components—expecting that while
the primary component fails due to an unanticipated error, the other clones still survive the impact to
render the service. ROC, introduced earlier in this chapter, essentially consists of detecting an error
early, taking the corrective actions, and performing a speedy recovery. The article by Roman et al.
[11] provides a high-level guideline of making an IoT system fault-tolerant. They suggest three broad
guidelines for sensor objects namely (i) making the objects participating in the IoT network robust, by
default (ii) build capability to make the operational state of the objects observable, and (iii) incorporate
self-defense and recovery mechanism in the participating objects.

We believe that these guidelines are not only applicable for the sensor objects, but also for the service
platform, as well as the communication infrastructure. The following table summarizes the applicability:

Guideline Applicability Technique

Making objects robust IoT objects as well as service
platform

Failure prevention, nullifying impact of error
through redundancy, and software design

Observable operational state IoT objects Error detection techniques that can analyze the
operational state to trigger the recovery action

Self-defense IoT objects as well as service
platform

Graceful degradation and recovery through
restart

We discuss these techniques in the next section.

11.3.1 NULLIFYING IMPACT OF FAULT
A common approach for a traditional high-availability cluster is to reduce the impact of a fault as much
as possible by eliminating the single point of failure (SPOF) both at the hardware and at the software
level. A common technique for this is to increase redundancy at various levels such as the infrastruc-
ture, the network, and in the software.

A simplified model to calculate the reliability of a system with redundancy having N components (a
hardware or a software), of which it is sufficient to have K components operational, can be expressed

20911.3 ADDRESSING RELIABILITY

as ∑= 





−
=

−R R R(1)KN
j

N

j K

N
j N j where R denotes the reliability of a component. If it is sufficient to have one

out of N redundant components operational, then the overall reliability becomes RN = 1 − (1 − R)N

or ∏= − −
=

R R1 (1)N i
i

N

1

 in case the reliability of the individual component is different. The first model is

relevant when we have exactly identical copies of software modules whereas the second model is for
different versions of the software or hardware components. The equation becomes more complex when
we assign different reliability values to active (K) and standby (N−K) components. Such a technique
of reliability estimation is quite common in the case of hardware-based redundancy for HA clusters,
though it is equally applicable for software components as well.

The report in Ref. [2] has illustrated a specific IoT case study called Connected Object platform
where various reliability issues of the CO platform have been highlighted. In these case studies, the tra-
ditional redundancy-based solution has been applied at the sensor object level as well as at the service
platform level.

11.3.1.1 Redundancy in Service Platform Design
A good design to build a robust IoT service platform is to introduce a set of loosely coupled compo-
nents so that the failure of one component does not bring the entire platform down. Depending on the
application scenario, one can then deploy multiple copies of the critical components.

Many times database systems become an integral part of the platform where the data from differ-
ent communicating objects are collected for analysis. In such a case, the database system can also be a
SPOF. Depending on the nature of the application one can adopt the following redundancy strategies:

1. Load balancing across multiple databases: The load of the incoming data can be shared across
multiple databases

2. Data replication: Multiple copies of data can be stored in the vast storage areas of clouds.

11.3.1.2 Redundancy in M2M Topology
In some application domains such as a large scale environment monitoring system, the IoT devices
can be scattered and decentralized. Unlike a hub and spoke model, these devices may require to in-
teract with each other to exchange their local computation. In order to increase the redundancy in
such a scenario, researchers have suggested storing replicas of the local data and computation on the
neighboring devices [35] so that a device failure does not result in a data loss. In a recent work, a fault-
tolerant middleware has been proposed [34] where the applications (called services) are replicated
across multiple nodes, with one being active at a time. Each device computes its own application, and
also knows where its own local applications have been replicated. Furthermore, it monitors another
device(s) through a heartbeat mechanism. For this purpose, the device maintains a copy of the ap-
plication deployment information of the device it is monitoring. This topology ensures that there is no
SPOF for any application. The failures are detected in a decentralized manner and failure recovery is
performed autonomously.

11.3.1.3 Graceful Degradation
In order to make the autonomous objects as well as the service platform of an IoT system survive for
long, a graceful degradation (also known as fail-safe) capability should be built-into the components.

RKN=∑j=KN jNRj(1−R)N−j

RN=1−∏i=1N(1−Ri)

210 CHAPTER 11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY

When an unexpected event occurs, a gracefully degradable system can remain partly operational, rather
than failing completely. However, as the system designer, it is important to define what degradation
means in a given application context. For instance, in an autonomous power-grid management system,
the monitoring system can selectively stop power transmission to a certain region keeping the main
controlling unit unimpacted. In the case of office automation system, the elevators can run at a lower
speed when the system falls back to a degraded mode. For a component-based software system, a fault
in a particular component can result in nonavailability of the service provided by the failed component
rather than bringing the entire system down.

11.3.1.3.1 Software Design
Building a gracefully degradable system requires careful planning and design. SaaS platforms today are
building applications that are failure resilient. These design practices have been presented as a collection
of design patterns by the practitioner community (http://techblog.netflix.com/2011/12/making-net-
flix-api-more-resilient.html; http://www.infoq.com/news/2012/12/netflix-hystrix-fault-tolerance;
http://martinfowler.com/bliki/CircuitBreaker.html)[36,49,50]. Although the references contain
more details, here we briefly discuss how some of these design patterns can be applied in the IoT
context.

Patterns Applicability Description

Circuit breaker Service platform In the event of failure, the calls are not allowed to reach
the failed component and an alert is raised.

Timeout Service platform and devices If a call takes too long, assume that the call has failed
and continue with the appropriate next step.

Bulkhead Service platform Distribute the component in multiple servers so that the
failure of one component does not impact other. This
technique can also be applied in designing the database
for IoT service platform using the following rules:

a. Distribute different tables in different database servers,
so that if one server fails, the platform is still opera-
tional

b. Partition tables horizontally and distribute records:
Older records can be kept in a separate database and
the main database handles the current information and
the recent history

Fail-fast Service platform and devices The component is designed not to go ahead with execu-
tion if certain preconditions are violated.

Blocked thread Ability to detect execution threads that are blocked or
consuming resource beyond a threshold

State decrement Service platform and devices As a part of the fail-safe design, the state decrement
pattern models various partially failed states. Here the
assumption is that the system has the ability to make
different services unavailable to deal with an error.
Minimum subtrahead proposes a monitor that detects the
failure and decides the next state.

Maximum subtrahead

http://techblog.netflix.com/2011/12/making-netflix-api-more-resilient.html
http://techblog.netflix.com/2011/12/making-netflix-api-more-resilient.html
http://www.infoq.com/news/2012/12/netflix-hystrix-fault-tolerance
http://martinfowler.com/bliki/CircuitBreaker.html

21111.3 ADDRESSING RELIABILITY

11.3.1.3.2 Performability Model
A well-known technique to evaluate the graceful degradation, specifically the State decrement pattern,
is to build a performability model of the system. The work by Trivedi et al. [47] proposes a Markov
model to capture the steady degradation from no-failure state to total failure situation and computes the
performability. We briefly explain the idea here. Assuming that it is possible to characterize the extent
of service loss l (possibly through the analysis of failure log) as different parts of the system fail, the
performability value indicates the relative amount of useful service per unit time by the system in the

steady state and is proved to be equal to ∑ρ= −
=

Y l(1)i i
i

N

0

 where ρi is the probability that the system is in

degraded state i (i = 0 means no failure at all and no service loss, ie, l0 = 0; i = N means total failure
with complete loss of service, ie, lN = 1).

11.3.2 ERROR DETECTION
Use of heartbeat and watchdog timers are traditional approaches to make the operational state visible
to the outside world, which can help in detecting the failure of any node in a networked, real-time
system. These techniques are certainly applicable in the context of an IoT system. We briefly discuss
them here.

11.3.2.1 Watchdog
This is a lightweight timer (often implemented by the hardware, as in traditional fault-tolerant VAX
11/780 or Pluribus reliable multiprocessor), which runs separately from the main process. If the main
process does not periodically reset the timer before it expires, the process is assumed to have a control-
flow error (the correct flow of control would have reset the timer). In such a case, a hardware-implemented
timer can generate an interrupt that can trigger a recovery routine. The recovery procedure can

1. Restart the process or the system from its checkpointed state
2. Invoke an appropriate recovery routine

Popular open-source IoT middleware today such as RIOT [17] or Contikic has a watchdog tim-
er support. Snappy Ubuntu Core (http://www.ubuntu.com/internet-of-things) for IoT devices also
reports that a watchdog mechanism is supported in the OS. Intel has recently announced their
IoT infrastructure solution known as Intel IOT gateway [29], which promises hardware watchdog
support.

Although a watchdog is easy to implement, the main problem with a watchdog-based approach
is that it does not adhere to any specific fault-model. Therefore, it is not possible to figure out the
reason why a watchdog-based trigger was activated. For a reasonably less complicated process run-
ning on an IoT device with a deterministic runtime, the watchdog is an effective mechanism for error
detection.

It is important to note that a watchdog is useful when availability is more important than correct
functioning (reliability). Therefore, IoT scenarios where zero tolerance is expected, watchdog may not
be a proper solution.

Y=∑i=0Nρi(1−li)

cContiki: The Open Source Operating System for the Internet of Things, http://www.contiki-os.org/

http://www.ubuntu.com/internet-of-things
http://www.contiki-os.org/

212 CHAPTER 11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY

11.3.2.2 Heartbeat
In this approach, a node in the network sends a message with a payload (ie, meaningful results, execu-
tion progress) to indicate that it is alive. If the heartbeat signal is not received within the prescribed
time, the monitoring component assumes that the application running on the node has failed. Heartbeat-
based communication has been used over a couple of decades in distributed systems. In the IoT context,
heartbeat-based detection can be employed when the interacting devices are computing complex time-
consuming tasks, or the devices are expected to respond only to some aperiodic events. In such a case,
it is important to know whether the device is fault-free and is ready to process any upcoming event.
However, for devices that send data streams in a periodic manner, heartbeat-based technique can be an
overhead. In such a case, watchdog-based approach is more appropriate.

Identifying the correct time interval for a heartbeat is tricky. Many modern distributed systems use
adaptive heartbeat mechanism where the heartbeat monitoring component estimates the heartbeat mes-
sage roundtrip time (RTT). A popular roundtrip estimation technique is T = wTp + (1 – w)D where T
denotes the estimated round trip time, which is a factor of the previously computed round trip time Tp
and the time-delay D to receive the acknowledgment after sending the heartbeat message. Following
the architecture reference model in Fig. 11.1, the heartbeat monitoring component can reside in the
gateway module. For a distributed set of components without any central hub, the heartbeat monitor-
ing needs to be implemented in the crucial components, who are responsible for data collection and
processing from other nodes.

11.3.2.3 Exception Handling
The basic premise behind an error detection technique is that an application satisfies a set of properties
for all correct executions of the application. If the property is not satisfied for any run of the program
due to a fault, exception occurs in the program. Use of exception handling mechanism in the program
(using language level features, or through checking error codes) is a recommended guideline for a reli-
able software design. Such a design practice needs to be adopted in an IoT-based system as well.

11.3.2.4 Recovery Through Restart
In conjunction with error detection, it is essential to implement a recovery mechanism for IoT com-
ponents. At a minimum, autonomous devices as well as network devices need to have a basic restart
mechanism [33], which can be triggered by the watchdog timer, or by the service platform. Restart
is a useful technique for autonomous devices to recover from any transient error. However, it is often
costly to have the entire system restart. Recently, a technique known as micro-reboot has been proposed
where a module can be selectively restarted rather than the entire system. Such a technique has been
first put into practice for the J2EE system where an EJB container can be restarted rather than the entire
application server. A component needs to be specially designed to have the micro-reboot capability. In
the context of an IoT system, the software written for an autonomous agent as well as the IoT service
platform can be designed based on a principle called crash-only-design [37]. Here the architecture
of the system is not only based on loosely coupled components but micro-reboot enabled as well. A
micro-reboot capable component needs to maintain its own states in a state repository. Such a model
has the functionality to create, read, and update the states. This functionality is invoked just before the
component execution to load its most recent state.

To implement the micro-reboot feature in the IoT service platform, the platform should adopt the
micro-kernel architecture pattern such that the components dealing with failure prone external entities
are decoupled from the platform core. In addition, the failure resilient driver model [38] design can be

21311.3 ADDRESSING RELIABILITY

adopted where the main service platform remains fault-resilient even when the modules that interact
with various devices and other partner systems fail.

11.3.3 FAULT PREVENTION
Fault prevention implies that faults are prevented from occurring on the runtime system. In traditional
high availability systems, it is a common practice to detect an imminent failure possibility and remove a
part of the system that can potentially fail. Although the basic idea is applicable in IoT, it is necessary to
adapt these ideas in IoT-based systems. Another approach to prevent failures in high-availability system
is to perform scheduled maintenance and timely software upgrades. Such a technique cannot always be
applicable for the IoT devices.

11.3.3.1 Failure Prediction
A generic approach for any failure prediction is to define a set of invariants the application must
satisfy when it is in operation. If these invariants are broken, the application can encounter an immi-
nent failure. If these invariants are modeled properly, it is possible to implement a monitor that can
watch for a failure of any invariant and can take a preventive action. The invariants can be designed
at various levels:

Program level: Assertions in a program are invariants that need to be satisfied for a correct
execution of a program. Program level assertions can be used for autonomous agents to detect an
incorrect input at an early stage and prevent the error propagation. Program level invariants can be
defined for the service platform software specifically at the places where the platform integrates
with external subsystems, which are extremely vulnerable. There are automated control-flow-
based assertion creations techniques [51] that can detect (i) if there is an unexpected branch from
the middle of a basic block or (ii) it is branching to any illegal block. Such techniques use control
flow analysis of the compiled program to insert the assertions. However, such an automated
insertion of assertions can significantly impact the performance of the system.
Infrastructure level: For autonomous devices, one can define a set of system resource usage
thresholds as invariants. An external monitor can observe if those thresholds are violated and
triggers a preventive action. This is a common practice for a traditional HA system.
Process level: Another class of noninvasive detection and enforcement of invariants has been
proposed for a running system, specifically when the system is complex and it is not easy to
insert assertions at design time or perform code analysis. These approaches do not deal with the
source code but tries to collect invariant properties of the running processes from the operation
logs. For such invariants to be meaningful, the challenge is that the invariants should not have
many false-positive cases, ie, the invariant violations really do not indicate an erroneous behavior.
The invariants should be at a reasonably high level so that the operations team can validate the
invariant violations. These invariants, created from the past operational data, can be useful for
the service platform. Specifically the flow invariants, which are relevant for detecting anomalies
in the case of stream of data or a set of transactions, can be applied in the context of IoT service
platform monitoring. A few flow invariant-based anomaly detection techniques for SaaS platforms
based on statistical models have been indicated in Ref. [30–32]. The work presented in Ref. [48]
proposes a monitoring agent to monitor the infrastructure usage related invariants as well as use
a stochastic failure model to predict an upcoming failure of a running SaaS system. Such an
approach can be adapted in the context of an IoT system.

214 CHAPTER 11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY

11.3.3.2 Improving Communication Reliability
In many IoT application scenarios, the communication of machines and sensors without human inter-
vention is a key requirement. To achieve this goal without failure, the reliability of the communication
system that connects the sensors together plays a key role in the overall system reliability [7]. Unlike
traditional systems, various IoT application scenarios such as environmental monitoring and office
automation demand that the communication infrastructure be reliable and sustain for a long time in an
energy constrained environment. For traditional system, use of redundant communication paths such
as multihop networking [15] has been a common design practice for better availability. Although such
a communication protocol provides the needed redundancy in IoT, it is also important to optimize the
number of hops, without sacrificing the reliability so that the energy consumption is under control.
Optimizing the energy consumption in wireless network through optimal area coverage has been an im-
portant and active area of research [39–42] for a long time. In particular, the energy conserving proto-
cols such as UDP would be a better choice than TCP-based communication for the embedded devices.
However, UDP comes at a cost that it is not as reliable as TCP. To address the reliability problem, the
Zigbee protocol (IEEE 802.15.4e) has been proposed recently which uses multihop communication
to avoid a single point of failure and it is energy efficient. This has now been adopted in several IoT
operating systems like RIOT, Contiki, TinyOS, and several others [18,19]. Further discussion on the
reliability of wireless sensor networks in general has been discussed in Ref. [53].

Recently, Maalel et al. [16] have proposed a new reliable protocol for IoT where the broadcast
nature of the wireless protocol is exploited to “overhear” a packet by the neighboring node even when
the neighbor is not the intended recipient. As a result, the necessity to send the additional ACK signal
is alleviated. This in turn reduces the traffic in network, resulting in an overall improvement of the total
energy consumption. Researchers have attempted to model various quality of service requirements of
a wireless sensor network (which includes sensors, actuators, and the network)—namely the lifetime
of a sensor, throughput, delay, and accuracy of data transmission [8] which can be used to evaluate the
reliability of a WSN.

11.3.3.2.1 Service Degradation Support
In the event of network failures, the network protocol may incorporate mechanisms to alert the au-
tonomous objects participating in the interaction. Such objects can then trigger their in-built graceful
degradation mechanism in response to the alert information received from the network.

11.3.3.3 Failure Prevention by Service Platform
The service platform in the architecture reference model can help in making the IoT system failure
resilient. The project MiLAN [9] describes an environmental monitoring system comprising several
embedded sensors and a central service platform. Although a sensor topology can introduce redun-
dancy to reduce the single point of failure, the sensors may not have the overall sense of the topology
to improve their longevity or to modify the next course of action based on the collective information
generated out of the topology. The service platform, equipped with the knowledge of the overall to-
pology, can take a better decision to prevent any failure. In MiLAN [9], the middleware assumes the
responsibility of improving the overall longevity of the sensor topology by regulating the quality of
service of different sensor devices. The quality of the service for a sensor device is mapped to a reli-
ability value to determine the state of the variable from the sensor data. For instance, in an IoT-based
healthcare scenario a blood pressure sensor with QoS 0.9 indicates 90% reliability with which the

21511.3 ADDRESSING RELIABILITY

sensor data can be used to determine the exact blood pressure. Depending on the overall state of the
monitored patient, the middleware can switch off the blood-pressure sensor or can instruct the sensor
to collect data at a QoS level of 0.9

11.3.3.4 Improving Energy Efficiency
Since an IoT-based system is supposed to be operational for a long time, it is important that the au-
tonomous devices can run on a battery power for a long time. To achieve this, a holistic approach to
optimize the energy consumption needs to be considered to prevent any failure due to the unavailability
of the battery power [24,25].

11.3.3.4.1 Device Power Management
It is highly important to optimize the energy consumption by the device as the battery power can
severely limit the device longevity. Dynamic management of power through dynamic voltage and
frequency scaling (DVFS) is a common technique to reduce the power consumption of a device. How-
ever, it has been observed that scaling down the voltage can increase the rate of occurrence of transient
faults on the embedded device [45]. A recent task scheduling strategy by Wei [44] considers a fault
model related to DVS and schedules tasks under varying voltage scales for real-time jobs.

CPUs in the mobile embedded devices are becoming increasingly powerful where multicore pro-
cessors are being used in smartphones. In addition, these CPUs are equipped with various power man-
agement mechanisms such as offlining a CPU core or dynamic voltage and frequency scaling (DVFS)
which reduces the CPU frequency to reduce the power consumption but compromises the performance.
In a recent study by Carroll and Heiser [46] it was shown that a policy that combines frequency scaling
and core offlining can result in reduction of power without compromising the performability. In this
approach, the frequency of a core is increased to a threshold and then switches on another core, but
drops the frequency to half for both the cores. This has been implemented as a new frequency governor
in the Linux kernel, meant for embedded devices. Such techniques can be introduced in today’s modern
sensor devices that are capable of running IoT operating systems for better energy management.

11.3.3.4.2 Communication Power Management
We have already discussed earlier that the communication protocols are becoming energy aware. Ad-
ditionally, energy efficiency can also be improved by adjusting transmission power (to the minimal
necessary level), and carefully applying algorithms and distributing computing techniques to design
efficient routing protocols.

11.3.3.4.3 Service Platform
Researchers have focused on building the energy optimization capability at the IoT service platform
level. The article by Sundar Prasad and Kumar [13] discussed energy optimization by scheduling vari-
ous activities judiciously where a selected set of nodes can be switched to sleep mode and only a subset
of connected nodes remains active without compromising the quality of sensing and data gathering.
The MiLAN project [9] proposes an energy aware middleware to orchestrate the activities of the sen-
sor networks. For example, the middleware can decide that even though the sensor topology contains
redundancy, it may be more energy efficient to turn off a few redundant sensors so as to improve
the overall longevity of the network under normal circumstances. Next, the middleware can reduce the
overall load of the critical sensors in a particular application scenario so as to extend the battery life

216 CHAPTER 11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY

of the critical sensor. In yet another scenario, the middleware can reduce the quality of data (such as
signal resolution) of healthcare devices in a normal situation. The article by Liu et al. [43] discusses
the quality of information (QoI) and energy efficiency in IoT network through a special purpose energy
management module in the service platform, which can take an informed decision to switch on or off
sensor nodes. The scheduler that is run by this module is aware of the QoI.
11.3.3.4.3.1 Data Quality vs Energy Usage. In the context of IoT, the data quality management
has become all the more relevant specifically when the quality of data collected by the sensors has
a direct impact on the energy consumption. The QoI present in the data broadly implies whether
the data (image, environmental data stream, audio) are fit for using the intended purpose. Defin-
ing QoI metric is context specific. In general, factors like latency, accuracy, and other physical
contexts (like coverage) can be used to create a QoI metric. The article by Liu proposes an IoT
middleware having a specific energy management module that provides an optimal covering of a
set of sensor network devices without compromising the QoI using a greedy approach. Such an
approach essentially aims to improve the overall reliability of the system and also increases the
system longevity.

REFERENCES
[1] Botterman M. for the European Commission Information Society and Media Directorate General, Networked

Enterprise & RFID Unit—D4, Internet of Things: An Early Reality of the Future Internet, Report of the
Internet of Things Workshop, Prague, Czech Republic; 2009.

[2] Grimsmo SB. Reliability issues when providing M2M services in the Internet of Things. MS Thesis Report,
Norwegian Institute of Science and Technology; 2009.

[3] Weber RH. Internet of Things—new security and privacy challenges. Comput Law Secur Rev
2010;26(1):23–30.

[4] Weiser M, Gold R, Brown JS. The origins of ubiquitous computing research at PARC in the late 1980s. IBM
Syst. J. 1999;38(4):693–6.

[5] Finkenzeller KR. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and
Identification. John Wiley & Sons, Ltd; 2003.

[6] Atzori L, Iera A, Morabito G. The Internet of Things: a survey. Comput Netw 2010;54(15):2787–805.
[7] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and

future directions. Fut Gen Comput Syst 2013;29(7):1645–60.
[8] Ming Z, Yan M. A modeling and computational method for QoS in IOT. IEEE Third International Conference

on Software Engineering and Service Science (ICSESS); 2012.
[9] Heinzelman W, Murphy A, Carvalho H, Perillo M. Middleware to support sensor network applications. IEEE

Netw 2004;18(issue I):6–14.
[10] Shi W, Liu M. Tactics of handling data in internet of things. In: IEEE International Conference on Cloud

Computing and Intelligence Systems (CCIS); 2011, p. 515–517.
[11] Roman R, Najera P, Lopez J. Securing the internet of things. Computer 2011;44(9):51–8.
[12] Grønbæk I. Connecting objects in the Internet of Things (IOT). Telenor R&I; 2008.
[13] Sundar Prasad S, Kumar C. An energy efficient and reliable Internet of things. IEEE International Conference

on Communication, Information & Computing Technology (ICCICT); 2012.
[14] Kyriazis D, Varvarigou T. Smart, autonomous and reliable Internet of Things. Procedia Comput Sci

2013;21:442–8.
[15] Al-Karaki J, Kamal A. Routing techniques in wireless sensor networks: a survey. IEEE Wirel Commun

2004;11:6–28.

http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0055

217REFERENCES

[16] Maalel N, Natalizio E, Bouabdallah A, Roux P, Kellil M. Reliability for emergency applications in Internet of
Things. In: IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS); 2013.

[17] Baccelli E, Hahm O, Petersen H, Gunes M, Wählisch M, Schmidt T. RIOT OS: towards an OS for the Internet
of Things. IEEE INFOCOM; 2013.

[18] ARM mbed OS, http://mbed.org/technology/os/
[19] Ubuntu wants to be the OS for IoT, http://www.zdnet.com/article/ubuntu-wants-to-be-the-os-for-the-internet-

of-things/
[20] Patterson D, et al. Recovery oriented computing (ROC): motivation, definition, techniques. Technical Report.

University of California at Berkeley, Berkeley, CA; 2002.
[21] Siewiorek DP, Chillarege R, Kalbarczyk ZT. Reflections on industry trends and experimental research in

dependability. IEEE Trans Depend Secur Comput 2004;1(2):109–27.
[22] Murphy B, Levidow B. Windows 2000 dependability. Microsoft Research Technical Report MSR-

TR-2000-56; 2000.
[23] Cinque M, Cotroneo D, Kalbarczyk Z, Iyer RK. How do mobile phones fail? a failure data analysis of Symbian

OS smart phones. Thirty Seventh Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, 2007. DSN ‘07, June 25–28, 2007, p. 585–594

[24] Thiagarajan N, Aggarwal G, Nicoara A, Boneh D, Singh JP. Who killed my battery?: analyzing mobile
browser energy consumption. in Proceedings of the Twenty First International Conference on World Wide
Web, ACM; 2012, p. 41–50.

[25] Hao S, Li D, Halfond WG, Govindan R. Estimating mobile application energy consumption using program
analysis. Thirty Fifth International Conference on Software Engineering (ICSE). IEEE; 2013, p. 92–101.

[26] The Council of The European Union. COUNCIL DIRECTIVE 98/58/EC of July 20, 1998 concerning the
protection of animals kept for farming purposes; 1998.

[27] Telespor AS. Telespor. http://telespor.no/; 2009 [Online].
[28] Avizienis A, Laprie J-C, Randell B, Landwehr C. Basic concepts and taxonomy of dependable and secure

computing. IEEE Trans Depend Secure Comput 2004;1(1):11–33.
[29] White Paper, Intel® IOT Gateways: Enabling and Configuring Watchdog Timer; 2015, #332842-002US.
[30] Jiang G, et al. Discovering likely invariants of distributed transaction systems for autonomic system

management. Cluster Comput. 2006;9(no. 4):385–99.
[31] Sarkar S, Ganesan R, Cinque M, Frattini F, Russo S, Savignano A. Mining invariants from saas application

logs. In: European Dependable Computing Conference (EDCC); 2014.
[32] Perkins JH, Ernst MD. Efficient incremental algorithms for dynamic detection of likely invariants. In Twelfth

Symposium on Foundations of Software Engineering; 2004.
[33] Internet Engineering Task Force. RFC 5187, OSPFv3 Graceful Restart; 2008.
[34] Su PH, Shih C-S, Hsu JY-J, Lin K-J, Wang Y-C. Decentralized fault tolerance mechanism for intelligent IoT/

M2M middleware. IEEE World Forum on Internet of Things (WF-IoT); 2014.
[35] Neumann J, Hoeller N, Reinke C, Linnemann V. Redundancy Infrastructure for Service-Oriented Wireless

Sensor Networks. In: Ninth IEEE International Symposium on Network Computing and Applications (NCA,
2010); 2010, p. 269–74.

[36] Saridakis T. Design patterns for graceful degradation. In: Noble J, Johnson R, editors. Transactions on Pattern
Languages of Programming I. Springer-Verlag Berlin, Heidelberg; 2009, p. 67–93.

[37] Candea G, Kawamoto S, Fujiki Y, Friedman G, and Fox A. Microreboot: a technique for cheap recovery. In:
Proceedings of the Sixth Symposium on Operating Systems Design and Implementation (OSDI); 2004.

[38] Herder N, Bos H, Gras B, Homburg P, Tanenbaum AS. Failure resilience for device drivers. In: Proceedings
of the Thirty Seventh Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN); 2007.

[39] Santi P. Topology control in wireless ad hoc and sensor networks. ACM Comput Surv (CSUR)
2005;37(2):164–94.

http://mbed.org/technology/os/
http://www.zdnet.com/article/ubuntu-wants-to-be-the-os-for-the-internet-of-things/
http://www.zdnet.com/article/ubuntu-wants-to-be-the-os-for-the-internet-of-things/
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0060
http://telespor.no/
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0080

218 CHAPTER 11 INTERNET OF THINGS—ROBUSTNESS AND RELIABILITY

[40] Cheng X, Narahari B, Simha R, Cheng MX, Liu D. Strong minimum energy topology in wireless sensor
networks: Np-completeness and heuristics. IEEE Trans Mob Comput 2003;2(3):248–56.

[41] Stojmenovic I. Localized network layer protocols in wireless sensor networks based on optimizing cost over
progress ratio. IEEE Netw 2006;20(no. 1):21–7.

[42] Gallais A, Carle J, Simplot-Ryl D, Stojmenovic´ I. Localized sensor area coverage with low communication
overhead”. IEEE Trans Mob Comput 2008;7(no. 5):661–72.

[43] Liu CH, Fan J, Branch JW, Leung KK. Toward QoI and energy-efficiency in Internet-of-Things sensory
environments. IEEE Trans Emerg Top Comput 2014;2(4):473–487.

[44] Wei T, Mishra P, Wu K, Zhou J. Quasi-static fault-tolerant scheduling schemes for energy-efficient hard real-
time systems. J Syst Softw 2012;85(6):1386–99.

[45] Zhu D, Melhem R, Mosse D. 2004. The effects of energy management on reliability in real-time embedded
systems. In: Proceedings of the IEEE International Conference on Computer-Aided Design (ICCAD); 2004.

[46] Carroll A, Heiser G. Unifying DVFS and offlining in mobile multicores, 20th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS); 2014.

[47] Trivedi KS, Muppala JK, Woolet SP, Haverkort BR. Composite performance and dependability analysis.
Perform. Eval. Elsevier Science Publishers B.V. 1992;14(3):192–215.

[48] Roy A, Ganesan R, Sarkar S. Keep it moving: proactive workload management for reducing SLA violations in
large scale SaaS clouds. Twenty Fourth IEEE International Symposium on Software Reliability Engineering
(ISSRE); 2013.

[49] Shore J. Fail Fast, IEEE Software; 2004.
[50] Nygard MT. Release It! Design and Deploy Production-Ready Software, Pragmatic Programmers; 2007.
[51] Bagchi S. Hierarchical error detection in a SIFT environment. PhD Thesis, University of Illinois at Urbana-

Champaign; 2000.
[52] Botta A, Donato W, Persico V, Pescape A. On the integration of cloud computing and Internet of Things.

International Conference on Future Internet of Things and Cloud; 2014.
[53] Adeel Mahmood Muhammad, Seah WKG, Welch I. Reliability in wireless sensor networks: a survey and

challenges ahead. Comput Netw 2015;79:166–87.
[54] Khodaei M, Jin H, Papadimitratos P. Towards deploying a scalable & robust vehicular identity and credential

management infrastructure. In: IEEE VNC, Paderborn, Germany; 2014.

http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0115
http://refhub.elsevier.com/B978-0-12-805395-9.00011-3/ref0115

219

CHAPTER

GOVERNING INTERNET
OF THINGS: ISSUES,
APPROACHES, AND
NEW PARADIGMS

M. Maheswaran*, S. Misra**
*School of Computer Science, McGill University, Montreal, Quebec, Canada;

**Ericsson Canada, Montreal, Quebec, Canada

12.1 INTRODUCTION
The popularity and problems of Internet of Things (IoT) [1] are rising very fast. Various projections
are estimating that IoT will reach about 50 billion devices by 2020. However, already approximately 2
billion smartphones are on the Internet, which means that well over 2 billion connected devices should
be operating on the Internet. A smartphone has many sensors including video cameras, which enables
users to easily shoot videos and share them with others over the Internet. This facility has already created
many privacy breaches [2] where unauthorized videos have harmed the reputation of many people. The
grander vision of IoT is to have a much larger number of sensors and actuators in the environment that
can be called upon to monitor and manage physical spaces. Therefore, we need to have methodical gov-
ernance mechanisms to regulate the activities of the smart objects (things) in future networked societies.

One of the most anticipated problems of IoT is the management of the vast amount of data IoT can
generate [3]. This creates a huge networking and storage issue to get the data to a stable computing plat-
form from tiny devices where the data are captured and an even bigger problem from a data security and
privacy point-of-view [4]. In addition to generating data, IoT also heavily depends on data for its operation.
For example, a HVAC system of a smart building would depend on the temperature and humidity data to
properly maintain the living conditions within the building. If the temperature and humidity data feeding
into the HVAC control system are corrupted, the operation of the HVAC could be unpredictable.

Although satisfactorily addressing the data management issues is crucial for the success of IoT,
there are important operation control issues as well. For instance, a computer needs to have a proper
access control scheme to prevent unauthorized users and malicious programs intruding it. Similarly,
IoT needs proper management framework to authorize its operations. For example, a drone may need to
get permissions from a property owner before crossing a private property much like an airplane request-
ing clearance to cross a sovereign airspace. Such requirements posed by IoT bring many interesting
research issues to fore.

This chapter presents an argument for developing a governance framework for tackling the data con-
fidentiality, data integrity, and operation control issues faced by IoT. We argue that an IoT governance
framework should be developed that is styled after the governance structures we have in the real world.

12

220 CHAPTER 12 GOVERNING INTERNET OF THINGS

Such a framework can deviate quite substantially in its architecture from the network management
systems [5] developed for enterprises due to the cyber-physical nature of IoT.

With a well-defined IoT governance framework, citizens and other stakeholders can hold the frame-
work accountable for breaches in data confidentiality, violations of data integrity, or irregularities in
operation control. Unlike an enterprise network management system which is driven by information
technology (IT) legislations or corporate ideals, an IoT governance framework needs to be driven by
the requirements of potentially large number of stakeholders [6]. Therefore, as favored by the respon-
dents of a recent EC study [7], the IoT governance framework should be architected such that it will
provide equal opportunity for all stakeholders to provide their input toward the evolution of the gov-
ernance procedures. Another interesting concern expressed by the respondents of the EC study is the
slow and weak enforcement of policies by existing governance structures in the Internet space. Clearly,
with IoT, we need frameworks that are agile to changing user requirements. Otherwise, citizens will be
living in environments that do not operate according to their expectations.

One of the unique challenges of IoT governance is the need to accommodate a variety of different
stakeholders with nonaligned goals. For instance, citizens or consumers want to protect their data [7]
whereas service providers want to use consumer data to know more about their behavior. Similarly,
device manufacturers want less or self-regulatory oversight such that they have the least hindrance
for introducing new technologies into the marketplace. Another challenge is that we need a common
vocabulary for expressing the requirements to reach a consensus among the different stakeholders in
IoT. Yet another challenge is to deal with the massive scale [1] of IoT and cope with the large number
of interactions among the constituting elements of the IoT.

At this time, IoT is still a vision that is yet to penetrate the lives of ordinary citizens. However,
massive deployment of computing elements in the form of smartphones has already taken place and
other IoT devices such as drones are gaining popularity. Therefore, the IoT management problem is
already gaining the attention of many researchers [8, 9]. So far four different ways have been postu-
lated for managing IoT: (1) Do Nothing, (2) Self-Regulation, (3) Co-Regulation, and (4) Binding Law.
In most of the current engagement scenarios, data acquisition by the digital services occurs through a
voluntary release of information by the owner of the data. Therefore, Do Nothing in terms of regulation
is an option because the person can be assumed to make an informed choice [4] when releasing the
data. However, with IoT, data about a person could be captured involuntarily. Therefore, Do Nothing is
not a feasible option. Similarly, Self-Regulation is a popular model for many Internet-based services.
For instance, online social networking sites and other online portals that gather significant amount of
user data use Self-Regulation [10]. The policies they follow as part of their Self-Regulation process
is made known to the customers who can take this into consideration while making a decision to stay
with or leave the service. Co-Regulation is another option that is mostly used by online services. In Co-
Regulation a service could use well accepted standards or a trusted third party to validate its data han-
dling processes. The third party (eg, a service such as TRUSTe) validates the data handling processes
of an online service portal and assures its customers on the safety of their data. The choice of the third
party and the extent of its involvement in managing data security at the site can be under the service
provider’s discretion. Further, the third party does not have any enforcement capabilities to intervene
at a finer level. The fourth approach is Binding Law. In this approach, the law dictates how the data
should be handled by a service provider. Again, implementing the law at a finer level (ie, ensuring each
transaction is safe) is very difficult. Applications that handle sensitive data such as health-care data are
subjected to Binding Law.

22112.2 BACKGROUND AND RELATED WORK

12.2 BACKGROUND AND RELATED WORK
12.2.1 OVERVIEW
IoT governance is a problem that is beginning to gain the attention of the researchers in the area of IoT
[8]. However, many of the problems addressed under IoT governance are similar to the issues faced
while governing or managing other large-scale systems such as the Internet. In the background part of
this section, we highlight the management issues in the Internet and enterprise networks. Although the
Internet is a public infrastructure that spans the globe, enterprise networks are deployed and managed
by a particular organization or a group of closely related organizations. Examining the governance that
takes place in these two cases sheds some important insights that could be used in the future development
of IoT governance systems. Also, in the background part of this section, we discuss surveillance which
is considered a top problem posed by IoT. We discuss various types of surveillance techniques and how
they could be amplified by IoT. Although IoT governance is a recent concern, many researchers have
already started examining this issue. In the related part of this section, we discuss some related initiatives.

12.2.2 BACKGROUND
12.2.2.1 Governance
Governance is a complex notion that is very difficult to capture using a single definition. Different stake-
holders tend to think of governance in different ways. The need for governance emerges when a large
group of people with different objectives come to coexist in a community. With a group size that is too
large to reach efficient consensus on the course of action on important matters, the group members can
delegate majority of the decision-making responsibility to an entity made of few members. These mem-
bers referred to as board of directors, committee, project management, or equivalent are responsible for
“steering” the community by setting the rules. The decision makers that constitute the governing entity
are responsible for taking into consideration all the contextual information and make appropriate deci-
sions with regard to governance for which they will be held accountable by the broader community [11].

What constitutes good governance and the principles that should be adhered to ensure such process
has been widely studied. As the definition of governance, there is little agreement on the principles of
good governance. Here are some of the important principles put forward by a UNDP study [12].

• Broader participation: The governing entity should facilitate everyone in the community to
contribute to the governing process without bias. The members of community could create
intermediate entities to represent them in the governing process and should have the freedom to
associate and speech.

• Strategic vision: The governing process must take the long-term well being of the community
while accommodating the short-term needs.

• Effectiveness and efficiency: The governing entity should be able reach timely decisions while
consuming minimal amount of resources.

• Transparency and accountability: Free flow of information is necessary for good governance. The
community members should be able to rationalize the decisions arrived by the governing entity
using the information that led to such decisions. Another related principle of good governance
is accountability. The community should be able to hold the governing entity responsible for the
decisions they make.

222 CHAPTER 12 GOVERNING INTERNET OF THINGS

• Equity and rule of law: The governing entity should act without bias in their decision making.
It should also take into consideration the laws of the land and long-term traditions of the
community.

12.2.2.2 Internet Governance
Internet is one of the most successful initiatives that is collaboratively governed by a large number
of stakeholders of different types: private enterprises, government agencies, public, and academic or
technical communities. While the different stakeholders have nonaligned objectives at a finer level,
their overall objective is to develop and maintain a network that will provide pervasive connectivity—
that is, they want the Internet to remain connected. In Ref. [13], DeNardis and Raymond provide an
in-depth analysis of Internet governance and its connection to multistakeholder models (MSMs). The
paper explains the pros and cons of MSMs vis-a-vis Internet governance. MSMs can help meet broader
objectives such as Internet interoperability, security, stability, and openness. However, MSMs also
could be used by crafty private enterprises and oppressive governments to stall the progressive evolu-
tion of the Internet. Despite popular perception that Internet governance is dominated by the United
States, the reality is much different. Only a narrow but important functionality is within the purview of
United States—name and address space management. The rest of the governance is distributed among
MSM bodies, private stakeholders, and other sovereign states.

Fig. 12.1 shows a high-level block diagram of the MSM that is associated with the Internet gover-
nance. The purpose of the block diagram is to illustrate the complex information exchanges that take
place among the different participates in the governance process.

FIGURE 12.1 High-Level Block Diagram of the Multistakeholder Model in Internet Governance

22312.2 BACKGROUND AND RELATED WORK

In Ref. [13], the authors disaggregate the Internet governance into six areas: (1) control of criti-
cal Internet resources, (2) setting Internet standards, (3) access and interconnection coordination,
(4) cybersecurity governance, (5) information intermediation, and (6) architecture-based intellectual
property right enforcement. Various functions are performed under the control of critical Internet re-
sources. For instance, central oversight of numbers and names, technical design of address formats,
domain name assignment, root certificates for trust bootstrapping, and domain name resolution. Some
of these functions such as central oversight of numbers and names are under US influence and others
such as root certificates are handled by private enterprises (eg, VeriSign). Setting Internet standards
is another important area of governance that involves designing core Internet and Web standards, and
establishing low-level or high-level communication and storage standards. Many institutions controlled
by MSM bodies such as IETF and ITU play a major role in this aspect of the Internet governance [14].

Access and interconnection coordination is important to get information flowing from one point
to another point on the Internet particularly when these two points are located on networks that are
controlled by different network operators. To get networks that are independently owned and operated
to talk to each other, we need interoperable protocols. So the protocol standardization is carried out by
an MSM body such as the IETF. Further, multilateral network interconnection points called Internet
exchange points are managed and operated for the purposes of facilitating interconnectivity. Network
quality of service and end user access policies are concerns that are handled by the operators of each
network by appropriately provisioning or setting the local access policies. One of the most controver-
sial aspects of interconnection governance has been network neutrality [15]. Network neutrality is cen-
tered around the debate whether network operators are entitled to give some content service providers
preferential treatment over others for a fee. The Internet community sprung up advocates for either side
of the argument and expected the government regulators to step in and arbitrate.

With the importance of the Internet for day-to-day human activities, security and protection of the
Internet infrastructure is a major concern. Part of Internet security is detecting security vulnerabilities
and coordinating the response to the vulnerabilities such that the damages could be minimized. Mul-
tilateral institutions (eg, Computer Emergency Response Teams) along with end users and software
companies organize to detect the vulnerability, create patches, and deploy the patches. Another part of
Internet security is the secure operation of the Internet infrastructure itself. To achieve this, secure pro-
tocols standards should be created and the infrastructure should be made to deploy acceptable standards
while interoperability is maintained across the Internet. To secure the Internet infrastructure, it is not
sufficient to have secure software and hardware, the system should be physically secure as well. This
is the responsibility of many Internet stakeholders. Also part of the Internet infrastructure security is
trust management. If trust is not properly managed a malicious attacker can interpose their equipment
into the Internet infrastructure and cause significant damage while the proper Internet is not subverted.
Therefore, trust governance on the Internet is an important problem that involves agreeing on a trust
certification protocol, certificate format, and operating the trust maintenance infrastructure [16].

The governance of information intermediation is quite different from other areas of Internet gov-
ernance. For one, it directly involves the Internet users unlike other issues that impact the Internet
users indirectly through the availability and trustworthiness of the services offered by the Internet. Is-
sues such as privacy from one another, privacy from government-backed surveillance, cyberbullying,
censorship, and freedom of speech have many people taking contentious positions with regard to their
governance. With government-backed surveillance programs [17], Internet stakeholders become suspi-
cious of one another, which can reduce the overall trust on Internet governance.

224 CHAPTER 12 GOVERNING INTERNET OF THINGS

One issue that has shot to prominence due to the popularity of the Internet is digital intellectual
property management. Therefore, significant amount of governance effort is spent on quelling the
problems that arise due to intellectual property infringement concerns. Intellectual property gover-
nance could involve dealing with disputes over domain name trademarks, removal of copyrighted
material from Internet-based repositories, and removing copyrighted material from Internet search en-
gines. Due to the international reach of the Internet, sometimes the party responsible for a particular
violation may be beyond reach in a sovereign state. In such situations, the Internet governance could
dictate corrective measures to isolate the offending party from the rest of the Internet.

Despite the lack of solid understanding of the way MSMs work [13, 14], MSMs bring broader
participation into Internet governance. Some of the benefits obtained through the broad participation
include: openness, transparency, accessibility, credibility, accountability, and measurement. Due to its
openness and transparency, MSMs are also resistant to capture by interested parties. Further, MSMs
while wanting to remain independent from sovereign governments, still facilitate the governments to
contribute toward Internet governance.

12.2.2.3 Enterprise Network Management
Modern enterprises manage their IT assets using policy-based approaches [18, 19], where activities are
guided by rules of the form “if condition than action.” Set of such rules are known as policies, and poli-
cies can be created to shape different behaviors for different types of systems (eg, technical or social).

Policies can be first expressed as high-level goals and then refined to operational rules that imple-
ment the original goals. The original goals can emerge from corporate ideals or privacy legislations.
The process of refining the policies from high level specifications (possibly in natural language) to low
level operational rules is challenging due to conflicts, ambiguities because of different interpretations
of context, incompleteness of the specifications, and the difficulty of ensuring that the operational rules
obtained after the refinement implement the original intent. The last challenge is known as the gulf of
execution [20] between the original intent and what is actually accomplished by the implemented rules.
For instance, a confidentiality control policy might restrict the access of a data object to a selected set
of trusted individuals, which does not always ensure the confidentiality of the data.

In enterprise network management, policy formulation is not automated [18]. However, significant
amount of research has been done in policy validation, ratification, and runtime analysis. Policy valida-
tion determines whether a policy is valid given the available capabilities and the computing context.
For example, a policy that calls for the use of an encryption that is not supported by the software stack
will be considered an invalid policy. The policy ratification can involve a formal process that can be
used by policy managers and authors to ascertain the suitability of a policy before deploying it. Run-
time analysis is performed once the policy is in force. This includes monitoring, auditing, and dynamic
conflict resolution.

In an enterprise network there are two types of end users: data users (accessing data) and data
subjects (data are about them). The policy should be understood by both types of users. To make us-
ers understand the policies, the policies should be presented in human-friendly format (eg, in a high
level language) instead of the machine-friendly language that is used while it is being interpreted by
programs.

Another interesting enterprise network management problem that is closely connected to the IoT
governance problem is the bring your own device (BYOD) problem [21]. BYOD introduces many
players into the enterprise network management process and weakens the control network managers

22512.2 BACKGROUND AND RELATED WORK

have on data privacy [22]. The biggest problem is the placement of data in devices that are not under
the direct control of the network managers of the company. There is lot of debate on the best way of
managing BYOD. In Ref. [21], Frank Andrus from Bradford Networks (a market leader in Network
Access Control) argues that users need to be engaged as responsible stakeholders in creating and en-
forcing management regimes with BYOD. The level of compliance with the governance schemes can
be very high if they already have user requirements factored into them. One of the key observations
made by him is the need for effective information flow between the users and the corporate network
operators—this he argues can lead to mutually beneficial governance schemes for all parties.

12.2.2.4 Management Versus Governance
Like the definition of governance itself the difference between governance and management is blurred.
From the example scenarios we discussed in Internet governance and enterprise networking, it is
evident that governance is carried by an entity that has a broad membership (ie, a multistakeholder
participation) and that entity is accountable for the whole community. In a management scenario, the
management team has a narrow membership often selected by the governing body. The management
team is responsible for efficiently implementing the policies and goals of the enterprise and may not
be accountable for the whole community. Further, the governing entity is responsible for strategic
decision making and the outcome of this could create policies and rules that could guide the manage-
ment team.

A governance entity cannot function by itself. It relies on a management team to actuate its policies
or guidelines. The management team needs to take the high-level specifications and make operational
decisions to achieve certain objectives. The details of the implementation are often left for the manage-
ment team and they could be held accountable for devising weaker forms of implementations that do
not meet all the objectives.

A management team, on the other hand, can exist without a governance entity. Small scale organi-
zations will use management alone. In the Internet governance, we have several small entities such as
network service providers that could solely depend on management. They would be taking the param-
eters defined by the Internet governance structures as guidance in their management process.

12.2.2.5 Surveillance and Internet of Things
Ever since computers enabled automatic data processing, concerns about different forms of surveil-
lance have escalated. Although surveillance is possible using old-school techniques that do not include
computers at all, automatic data processing and the associated data storage and retrieval techniques
allow surveillance of massive scale to happen across long time ranges. With the introduction of IoT,
surveillance regimes that were once the domain of governments could be within the reach of small
profit making ventures. In such a scenario, surveillance would not be a concern with regard to govern-
ment sanctioned policies but a broader concern with many active surveillance initiators and the general
public that is affected by it. We believe a proper IoT governance framework is the best approach to
manage such surveillance capabilities afforded by the IoT.

Smart surveillance [17] is a term coined by Langheinrich et al. to describe the assemblage of sur-
veillance schemes one could create using individual schemes that are enabled by the advancements in
sensors, networking, cloud computing, and intelligent data processing algorithms. It enormously aug-
ments the capacities of the parties that want to gather intelligence in a strategic and opportunistic man-
ner. With smart surveillance [17], application-specific intelligence from captured data (eg, the presence

226 CHAPTER 12 GOVERNING INTERNET OF THINGS

of people or vehicles in a video) can be extracted with ease. The intelligence could be archived, cor-
related, shared, or used to deduce high-level decisions.

In Ref. [17], Langheinrich et al. identify six stakeholders relevant for smart surveillance: govern-
ments and public authorities, industry representatives, academics, policy makers, the media, and citi-
zens. Governments and public authorities often champion the introduction of smart surveillance re-
gimes in the context of ensuring public safety. Industry representatives are interested in pushing their
technologies for implementing surveillance regimes and as a result often highlight the efficiencies such
regimes could bring to the society. For instance, immigration control, safety in public places from
acts of terrorism are some of the applications that trigger the installation and operation of surveillance
schemes at different levels of sophistication. Academics have engaged in researching various tech-
nologies for surveillance (eg, image recognition algorithms) and at the same time debating policy and
social ramifications of surveillance. Policy makers are often part of a government agency (eg, defence
departments) or part of a multistakeholder institution that has a broad composition. With large amount
of data gathering and storing done by private enterprises (eg, online social networks) some of the policy
making is falling within their purview as well. For instance, what type of data to gather and how long
to store them is part of the policy followed by the private enterprises that could determine the role such
data could play in smart surveillance. Media could be playing an active role promoting surveillance by
propagating information regarding the perceived threats for public safety and at the same time the media
could give a voice for the negative aspects of surveillance. Citizens and citizen groups often favor the
introduction of surveillance to combat terrorism and other criminal activities but change their allegiance
when they learn that the scope of surveillance could be much broader and it could impact their freedom.

The position of these stakeholders is often mixed [17] with regard to the different forms of surveil-
lance: some supporting and others opposing and sometimes changing their positions. However, aca-
demics, media, and citizen groups (eg, civil liberties union) play important roles in analyzing the im-
pact of surveillance on individual freedom and disseminate them to the public for appropriate response.

12.2.3 RELATED WORK
In Ref. [8], Almeida et al. present the most recent discussion on IoT governance. In this paper, the
authors observe that the privacy and data protection measures that are often instituted are dependent
on the function and scale of the data gathering mechanisms. For instance, when automated data pro-
cessing became feasible due to the introduction of the Internet, many of the existing privacy legisla-
tions became necessary. Although the introduction of Internet and cloud-based back ends enable the
automation of data analysis, IoT can bring in automated data capture. If proper safeguards are not
put in, people can be subjected to massive automated surveillance as they go about doing their day-
to-day activities. The paper argues the adoption of four principles for data protection: (1) notice and
choice, (2) data minimization, (3) access to personal data, and (4) accountability. Notice and choice is
a popular approach to address the data collection concerns in many Internet-centric systems (eg, online
social networks). Implementing this idea on IoT might be challenging due to user interface restric-
tions and the shear number of devices and services one would encounter with IoT. Access to personal
data mandates that the end user has the right to access the data that were collected on him/her. Many
online portals are beginning to implement some form of this principle to address the mounting privacy
concerns. In IoT, the volume of data could be so huge that merely having access to the collected data
might not be very helpful.

22712.2 BACKGROUND AND RELATED WORK

The paper also notes that IoT governance could be an extension of the Internet governance which
is already very well developed. Some issues such as standardization, interoperability, security, and
privacy could leverage the frameworks that are already in place for Internet governance. Certain as-
pects of IoT governance such as multistakeholder involvement might need extensions of the existing
frameworks.

In Ref. [6], Almeida et al. examine multistakeholder model and their connection to Internet gov-
ernance. This paper defines stakeholders as individuals or groups who have interest in a particular
decision because they can influence it or can be affected by it. The MSM described in the paper has
five major components: goals, participants, scope, timelines, and connection to decision makers. The
cooperation elicited by a successful MSM among its participants can yield a system that is not achiev-
able by a single stakeholder. The Internet brings together diverse participants: governments, technical
community, civil society, and private sector. An MSM can have stakeholders that operate at different
scopes. For example, the Internet can have international organizations such as ICANN and regional
organizations such as Regional Internet Registries. The MSM can be connected to the decision makers
in two different ways: on a purely informational basis or developing best practices. When MSM is en-
gaging with the decision makers in a purely information manner, the decision makers are not compelled
to take the ideas of MSM into consideration. On the other hand, by generating best practices, the MSM
can exert some pressure on the decision makers to follow the set guidelines.

One of the key activities in MSM bodies is consensus building. The process of consensus building
is often very difficult and messy. The different stakeholders will arrive at an agreement only if their
viewpoints or grievances are reasonably accommodated in the final decision. An agreement of the
stakeholders indicates their willingness to accept and implement the final decision.

The paper identifies many research issues that should addressed for designing and implementing
successful MSM bodies: (1) identifying the right set of stakeholders to participate in a particular deci-
sion-making process, (2) the mechanisms for selecting participants for the different groups, (3) inclu-
sion of crowdsourcing in the MSM dialog, (4) technologies for the representative to stay connected to
their constituencies, (5) technology support for achieving and accelerating consensus in MSM bodies,
and (6) theoretical models for consensus development in MSM bodies.

In Ref. [9], Weber discusses IoT governance problem in depth. It starts off with a discussion of
EC sponsored user study [7] on IoT. It then describes some IoT-specific issues by comparing IoT gov-
ernance to Internet governance. Two major issues are identified in Ref. [9]: naming differences and
issues requiring regulatory frameworks. In the Internet, domain names are used whereas object names
such as RFID tags are used in IoT networks. Governing the object name space so that it would provide
an interoperable facility for naming and discovering smart objects is an important problem. As issues
requiring regulatory frameworks, the paper discusses privacy, security, ethics, and standardization of
IoT architecture. Continuing further, the paper identifies important pillars of IoT governance. One
of the ideas heavily discussed is the idea of setting up a regulator for IoT along the lines of existing
ones for trade (World Trade Organization). The paper posits that it is still premature to float this idea
and does not envision it to be a viable approach in the near future. Although setting up a regulator is
deemed infeasible, the paper is favorable for regulation. It goes into a discussion of what would be
the best approach to regulation: top-down or bottom-up. Another interesting idea floated in the paper
is open mechanisms for coordination. The paper is of the opinion that depending on the underlying
social structure we should adopt different coordination mechanisms to achieve an efficient regulatory
mechanism.

228 CHAPTER 12 GOVERNING INTERNET OF THINGS

The paper identifies the following set of substantive principles for IoT governance as part of exposi-
tion of the topic: (1) legitimacy and representation, (2) transparency, (3) accountability, and (4) IoT infra-
structure governance. Everyone in a society could be affected by the way IoT is managed. Therefore, it
is important that everyone has an opportunity to influence the IoT governance. Like the idea of transpar-
ency in the Internet, the IoT transparency involves the ability to identify the elements of the management
structure, information pertaining to management, and the right to access information. Accountability is
an important substantive principle which dictates that the governing body should be held responsible for
its actions. For instance, governing regimes could be subject to sanctions for irregular practices.

A cloud-based management framework called GovOps (Governance and Operations) is presented
in Ref. [23] for IoT. The objective of GovOps is to make operational governance of IoT cloud systems
easier by seamlessly integrating the governance objectives into IoT cloud operation processes. Instead
of defining a new methodology for governing IoT, GovOps attempts to obtain high efficiencies in the
overall IoT cloud management by providing a facility to integrate governance policies into operation
processes. Two example applications used in the paper are building automation systems (BASs) and
fleet management systems (FMS). In both applications, we can have variety of different stakeholders:
end users, managers, and government policy makers. The paper identifies three forms of governance:
environment-centric, data-centric, and infrastructure-centric. In a BAS environment, residents, build-
ing managers, and regulatory policy makers (government) are concerned about governing the environ-
ment created within and outside the buildings. In data-centric governance, measures for securing data
and enforcing privacy requirements are carried out. Infrastructure-centric governance focuses on issues
related to installing, configuring, and deploying IoT cloud systems.

One of the example governance objectives used to illustrate GovOps is implementing the legal
requirements with respect to sensory data in BAS or FMS environments. The corresponding operation
process would be spinning up a secure aggregator gateway in the cloud for sensor data stream and
setting it up properly. Another important component of the GovOps is the GovOps manager. It is a
dedicated manager that is responsible for bridging the gap between the governance strategies and the
operations processes.

An implementation of the GovOps concept presented in Ref. [23] is given in Ref. [24] and referred
to as the runtime framework for GovOps (rtGovOps). It provides the first known large scale implemen-
tation of a governance framework. Following the philosophy of GovOps, the purpose of their frame-
work is not to evolve the management policies, but to implement a given governance policy across a
large cloud-based IoT system. An experiment involving an FMS was carried out in Ref. [24], where
golf carts were controlled using a cloud-based rtGovOps framework. One of the experiments demon-
strated in the paper was to switch the golf cart management from normal mode to emergency mode.
The authors claim that without their rtGovOps framework such a switch is cumbersome particularly for
a large fleet of golf carts. With the rtGovOps framework, golf cart renting agency can easily manage
the operation by setting the policies using a cloud interface.

12.3 IoT GOVERNANCE
12.3.1 OVERVIEW
The IoT governance is a very new problem. In fact, the full extent of the problem is still unknown be-
cause IoT itself is still a developing phenomenon [25]. IoT is very closely intertwined with space and

22912.3 IoT GOVERNANCE

time because the fundamental problem is the injection of computing intelligence into the space. Such
injection can be carried out by static or dynamic (mobile) installations. The dynamic means changes
with time because they could be tied to the movement of people.

The IoT governance models discussed here highlight the need to consider different variations of the
governance structures to accommodate the different ways of injecting intelligence. In this section, we
also discuss several IoT governance issues and existing approaches. Finally, we highlight some new
paradigms that could be examined for IoT governance.

12.3.2 AN INTEGRATED GOVERNANCE IDEA
Governance in a modern society is a feedback-based process, where the composition of the governing
entity and the policies it adopts can change with time based on the feedback from the larger community
that is being governed. The Internet governance described in a previous section fits this model. In this
model, the composition of the governing entity could change in response to emerging scenarios. For
example, when a new technology (eg, software defined networking) emerges, IETF may create work-
ing groups to initiate and study standardization efforts on that technology. Such working groups would
have participants from interested organizations and individuals reflecting the broad and open partici-
pation model of the Internet governance. As the community loses interest in a technology, working
groups on the technology may cease their activities.

The IoT governance could be called upon to tackle even broader set of issues than Internet gover-
nance. It could, however, be styled after the Internet governance—as an MSM entity. With the scale of
IoT and the expected dynamism of the system, we may need an automated governance framework. The
best way to create such a governance framework is to leverage the strength of IoT. In particular, IoT
is expected to bring tremendous improvements in terms of efficiency for existing physical processes.

12.3.3 GOVERNANCE MODELS
One of the unique aspects of IoT is its massive scale [1]. Therefore, we do not envision a single
governance process to apply to the whole system. There will be many governance processes concur-
rently working within the system. The governance model defines how these concurrent governance
processes relate to each other. They could all be running completely independent of each other
or there could be a hierarchical relationship among the governance processes. With a hierarchical
relationship, a child governance process would inherit the parameters established by the parent
governance process.

12.3.4 IMPORTANT GOVERNANCE ISSUES
In the EC user study [7], curiously, some of the industrial players registered themselves as “other” to
keep their affiliations private, which highlights a need for privacy in governance. Like the secret ballot
enabling governance with broad participation, we need privacy preserving participation mechanisms
to create an agile governance framework for IoT. In particular, user input should be securely registered
without associating it with user identification. User identification could be a crucial and contentious
issue in developing a secure framework for obtaining user input. For instance, if users are identified by
the IoT they own, users without the particular device will feel disenfranchised. On the other hand, tying

230 CHAPTER 12 GOVERNING INTERNET OF THINGS

user input to biometric markers would be considered highly intrusive and cause much privacy con-
cerns. Therefore, developing a broadly acceptable user identification that is deployable with minimum
startup cost at a massive scale is the key for the creation of a novel governance framework for IoT.

An IoT governance framework will receive input from potentially large number of stakeholders
and need to find consensus among their positions. Although we need unrestricted input for an agile
governance process, the framework must adhere to the following principles to realize fair governance:

• Transparency: Despite the massive scale and potentially heterogeneous composition of an IoT
system, we need open mechanisms for policy generation and enforcement as part of governance.
This would allow the participants to verify that the governance process is operating without bias
or malice.

• Proportionality: It is inevitable that an IoT governance process would make decisions that go
against the wishes of certain users at certain times. Such decisions would be made to maximize
the overall welfare of the system. Therefore, it is important to take actions that are proportional
to the problems. Suppose an IoT governance framework creates policies disabling certain actions
based on privacy concerns. We expect the privacy concerns to be severe enough to offset the
utility lost due to disabling the given actions.

• Accountability: IoT governance processes would be very long running processes. At any given
time, there could be dispute about decisions or operating policies applied in the past. So it is
necessary to maintain a verifiable record of the decisions and the factors that contributed to those
decisions. Offending parties should be held accountable despite privacy preserving measures and
the framework must ensure that factors contributing to bias or malice are removed (if possible
retroactively).

Fig. 12.2 shows a layered model for IoT. It has four layers including the physical world compo-
nents. The Gadget Layer consists of all the components that capture physical processes or create the
physical processes that are fed into the smart system. The gadgets in the Gadget Layer are connected
by the Communication Layer. The Communication Layer can be realized using wireless, ad hoc, or
wireline networks. The data captured or created by the gadgets are passed over to powerful compute
nodes in the cloud for intelligence extraction. The intelligence extraction itself is managed or dictated
by the applications that run on the compute nodes. From the governance perspective it is interesting to
note the separation of the model into two realms: Physical Realm and the Cyber Realm. A data genera-
tor or owner can have two different identities in the two realms and linking them in a secure and privacy
preserving manner in all situations is a major challenge. For example, when Alice takes a video that
includes Bob, the stored or streamed video would not have Bob unless he is tagged, which can be error
prone even if done automatically. An IoT governance framework will be subject to the data attribution
problem depending on the granularity of policy enforcement. Suppose it uses a data-oriented gover-
nance then it needs to discern the type and criticality of the data.

12.3.5 EXISTING APPROACHES
IoT and ubiquitous computing share the frightening vision of Orwellian-nightmare-come-true [4],
where the world is full of spying devices that are watching each and every activity of a person. There-
fore, not surprisingly, privacy is a problem that has been studied very carefully by many researchers
in ubiquitous computing [26]. In Ref. [4], Langheinrich discusses several important design principles

23112.3 IoT GOVERNANCE

and guidelines to implement privacy in ubiquitous computing: notice, choice and consent, anonymity
and pseudonymity, proximity and locality, adequate security, and access and recourse. It is interesting
to note that the scope of much of the work in privacy aware ubiquitous computing is limited to stop-
ping opportunistic privacy invasions than stopping a determined adversary with potentially unlimited
amount of resources (eg, a government spy agency). The scope of the privacy aware design of IoT is
still unknown and will become evident as the field matures.

Notice is a fundamental principle which requires the data collector to notify the subject about its
intention to collect data. While such a notifying protocol would not help in thwarting illegal surveil-
lance operations, it would prevent mass-market devices being turned into surveillance equipment by
interested parties. One of the implementations of the notice principle is the Platform for Privacy Prefer-
ences (P3P) [27] project. In P3P, websites describe their data collection activities in a machine readable
format. This specification is parsed by the web browser and compared with the privacy requirements of
the user. If conflicts are detected (ie, the data collection practices are contravening the privacy require-
ments of the user), the user is alerted otherwise not. A device in a ubiquitous computing system could
use a declaration format like P3P to announce its requirements to other elements.

FIGURE 12.2 A Layered Model for IoT

232 CHAPTER 12 GOVERNING INTERNET OF THINGS

As ubiquitous systems gather privacy sensitive data, it becomes necessary to get explicit consent
from the subject before gathering to satisfy the legal requirements. Choice and consent is the protocol
proposed in ubiquitous computing systems to obtain such explicit consent. One of the tricky problems
with choice and consent is the amount of work users could be subjected to by over eager collectors
wanting consent for their data collection regimes. For instance, when a user enters a ubiquitous com-
puting environment, she would find Choice and Consent too onerous if she is bombarded with requests
from many collector devices. Another problem with Choice and Consent is the possibility that consent
might be tied to the delivery of a certain service or access to a certain resource. For example, a user
could be denied access to a building if she refuses to accept certain data collection policies.

With advancements in the development of precise indoor locationing and GPS assisted outdoor lo-
cationing, there are mounting locality or proximity-based privacy concerns. Although many users roam
around and access services anonymously, to obtain specific services they need to authentic themselves
using at least pseudonymous credentials. Depending on other information that could be gleaned from
the context of the computing activity, a data collector could try to link user’s activities to information
from other sources (eg, sites visited) to reconstruct a user profile.

The initiatives within the ubiquitous computing umbrella are focused in safeguarding individual
users from institutions that may setup and manage ubiquitous computing environments. With IoT, very
diverse patterns of highly distributed computing are emerging.

The popularity of smartphones is making them indispensable tool for large number of people in-
cluding high-school children. Parents have various concerns such as online pornography, cyber-bul-
lying, and excessive gaming when giving smartphones to their children. Smart Sheriff [28] sponsored
by the South Korean government is a tool that provides the parents an oversight into the smartphone
activities of their children. Parents can monitor and control the applications and other parameters of
the smartphone by setting appropriate management policies. The remote control of Internet connected
smartphones by parents is not unlike the management of enterprise networks by system administra-
tors. Although the system administrators are enforcing IT policies of the enterprise over all comput-
ers, Smart Sheriff allows the parents to control their children’s smartphones according to their family
values.

Drone control is another problem that is gaining considerable attention. There is debate on whether
drones should be controlled and if so, how they should be controlled [29]. Industry representatives and
enthusiasts who are keen in the development of the drone industry do not favor excessive regulations.
However, due to privacy and nuisance concerns, efforts are underway to regulate drone operations.
First of its kind is the Senate Bill 142 in California State Legislature, which prohibits trespassing in a
drone through a private property at or below 350 feet [30]. The mechanisms devised to enforce such a
law is a challenging problem. The Federal Aviation Agency (FAA) that has the oversight of the airspace
over United States for all forms of civil aviation is also getting ready with its own set of regulations
for drones. One of the biggest problems with regulations is that the drone operators may not be aware
which space is restricted and which is not. To address this problem, FAA is developing a smartphone
application called B4UFLY that can be used to verify whether a flight plan is allowed or determine the
restrictions (if any) that are associated with it. At this time, the flight control software of the drone does
not abide by the regulations. So transgressions of the drone operator with respect to the regulations are
not stopped by the flight control system nor detected by an automated enforcement system.

Connected cars maintain a continuous connection to a vehicle control center through which they
could be controlled thus overriding some of the inputs of the drivers (if necessary). Although such a

23312.3 IoT GOVERNANCE

facility is a massive security concern, it could help with the management of a fleet of vehicles accord-
ing to some set policies. The Ford MyKey is one such remote vehicle control system that allows a par-
ent to set the limits on performance and functionality of the car when a teen driver is operating the ve-
hicle. The Ford MyKey provides various control functions through which the parent could control the
operation to suit their intentions. For example, speed could be hard limited and warning chimes could
alert the driver for excessive speed even within the hard limit. MyKey could also be used to remind the
occupants about the seatbelt and disable some functions unless seatbelts are worn.

In Table 12.1, we summarize the approaches we have discussed so far. We are particularly inter-
ested in eliciting the major factors that are involved in managing a large smart environment. We use
three factors in this analysis: what is being controlled, who is the controller, and the type of control. In
ubiquitous computing, we control private data release. The environment notifies the incoming device
about the types of data that will be collected and the device could either opt in or out of the environ-
ment. So we denote the type of control as mandatory because the device is not going to release the data
if it does not agree to the terms of data collection. In connected car and Smart Sheriff, the device opera-
tion is controlled. In ubiquitous computing, the device operator is the controller whereas in the other
examples we have a remote controller. The type of control could be either mandatory or advisory. For
instance, with Ford MyKey Smart Sheriff, the control is mandatory. The equipment is designed so that
the parent’s control cannot be circumvented.

12.3.6 NEW PARADIGMS
One of the important problems highlighted by the EC study [7] on IoT governance is the gap that exists
between the different stakeholders that contribute to the development of IoT. The industrial players
wanted least regulation so that the industries involved in IoT will have the freedom to innovate. Also,
they heavily favored a self-regulated setup much like what is happening with data privacy in online
social networks. The citizen groups and other civil societies were heavily concerned about privacy
and related issues so they heavily favored some form of governance. However, interestingly, existing
forms of governance in the Internet did not find much favor among many of the respondents due to their
“slow and weak enforcement” of policies. Although the respondents agreed that IoT needs some form
of governance, they were in strong disagreement with regard to the way in which such a mechanism
could be realized.

The immediate need with regard to IoT governance is to improve the information flow among
the stakeholders to narrow the gap among them with regard to the major issues. For example, policy

Table 12.1 Comparison of the Different Governance Schemes

Example Scenario What is Being Controlled? Who is the Controller? Control Type

Ubiquitous computing scenario Data release Device operator Mandatory

Drone regulations Device operation Central agency Regulatory

Drone application (B4UFLY) Device operation Central agency Advisory

Ford MyKey Device operation Parent Mandatory

Smart Sheriff Device operation Parent Mandatory

234 CHAPTER 12 GOVERNING INTERNET OF THINGS

makers should have up-to-date information on citizen’s reaction to new technologies, their needs, and
the environmental impact, or social effect. Similarly, manufacturers should have the most recent infor-
mation on social impact and anticipated policy decisions with regard to emerging technologies. This
creates an environment where all parties are cognizant of the concerns and needs of the other parties.
Although improving the information flow improves the situation, we cannot expect it alone to com-
pletely narrow the gap and create cooperation among the parties.

The ultimate purpose of IoT is to deeply integrate the physical and cyber worlds such that day-to-
day objects become part of smart systems. It is anticipated that such smart systems will yield much
higher levels of user experiences and gain popular support of the users. The user experience can be
described as the “sum of our relationship with technology.” Therefore, a smart system should go well
beyond supporting sophisticated sensory inputs and providing exciting outputs; it should make an
emotional connection. One way of ensuring this emotional connection is to have a governance regime
that takes the users’ wishes into consideration.

The biggest benefit IoT brings to physical systems such as electric power grid is agility, where the
smart variation of the system is able to sense various environmental factors and adapt very quickly to
the emerging conditions. The smart system is expected to provide higher levels of efficiencies by being
agile. Applying the similar mechanisms for governance and taking into consideration users wishes as
environmental factors should be part of the new paradigm for IoT governance.

12.4 FUTURE RESEARCH DIRECTIONS
Governance of IoT is a topic full of many interesting research problems. Many initiatives are still un-
derway at major industrial labs, startups, and open-source projects to realize the full vision of IoT. As
these initiatives materialize and IoT gets deployed in a massive scale in the real world, we are going to
experience the real governance problems. This will trigger an urgency to address these problems and
manage the disruptions caused by this exciting technology to human life. Following is a list of research
problems, we believe, should be addressed to realize an efficient governance framework for IoT.

• User studies: One of the well-known user studies regarding IoT was carried out by EC [7]. In this
study, 600 questionnaires were answered by participants from a variety of different demographics.
One improvement is to repeat such studies for a period of time and also track the infusion of
technology into the group of people that are being studied. This way we can get an idea of how
user opinions change with time and penetration of technology. User opinions are important
for governance. The ultimate objective of governance of IoT is to manage the injection of the
technology such that humans would not start rejecting the technology due to privacy, security, and
other intrusion concerns.

• Case studies: Although the user studies mentioned earlier are targeting how user perceptions
change with time, we also need feedback on actual user interactions in smart environments created
by IoT. Although many studies have measured user behavior from a usability point-of-view in
smart homes and buildings [31, 32], we are yet to have significant studies from a governance point-
of-view. For governance studies, we need deployments in the scale of cities to gauge user actions
in a realistic manner. With the anticipated advancements in real world adoptions of IoT, we are
not far away from such large-scale studies. To carry out such real world studies, we also need to
establish hypotheses to test, interesting experiments, and parameters to measure.

23512.5 CONCLUSIONS

• Secure device designs: The reliability of the governance framework would be very low if we rely
on the end user to comply with the governing policies formulated by the framework. Instead, we
need a holistic framework that includes enforcement. The enforcement step requires support at the
end devices so that the policies are mandatorily followed. The biggest problem to tackle here is
the design and implementation of tamper-proof devices that are still cheap and easy to maintain.
One of the core requirements of IoT is to keep the hardware cost very low due to the massive
number of devices that can be deployed at the edge. Along with the power constraints the cost
constraints can severely limit the design options one can have for the devices. The advantage is
the possibility of building on top of the tremendous advancements already made in developing
highly trustworthy devices such as smartphones at massive scale. However, unlike smartphones,
which are personal devices, the IoT devices would be shared much like the physical infrastructure.

• Secure software designs: Software plays an important role in implementing the governance
framework. We need hardened software that is hard to subvert. Although it is still a challenge
to develop highly complex software system that is impervious to subversion, significant
advancements have been made in creating hardened large-scale software systems. IoT needs
hardened software systems that cannot be subverted and can be relied upon to implement the
governance policies whatever they are. The biggest challenge in this regard will be the end user.
Because the policies formed by the governance framework could run counter to the requirements
of the end user, we need to have software and hardware systems that can withstand the efforts of a
local end user to subvert the system.

• Accountability and sanctioning mechanisms: We cannot rely on the hardware and software
mechanisms to implement the governance policies in a fault-proof manner. Therefore, we need
fallback mechanisms that will detect violations of the expected governance policies and sanction
the parties that are causing the violations. As part of detecting the violations, we need to attribute
the governance policy violations to the correct party. This requires a trusted user identification
mechanism that has accountability support. One of the challenges in realizing this goal is the need
to preserve user privacy as they engage with IoT. This calls for research into privacy preserving
identification schemes that can support accountability while running on resource constrained IoT
devices.

12.5 CONCLUSIONS
IoT is a vision that is expected to bring significant changes to every aspect of human life. Given its
pervasive nature, one of the important problems with regard to IoT is its governance. Governance is
a complex concept that is often defined in many different ways. For the purposes of this chapter, we
consider governance as way of delegating the authority of managing a large-scale system to an entity
and holding the entity accountable for the decisions it makes.

We discussed the concept of governance and management (particularly enterprise network manage-
ment) and contrasted between the two in the context of large-scale systems. We reviewed many initia-
tives that are examining the IoT governance or related problems and highlighted their contributions.
The advent of various forms of service-oriented computing made data security and privacy a major
concern because service-oriented computing facilitates the application of automated techniques for
extracting intelligence from data. IoT introduces another new dimension—this time automated data

236 CHAPTER 12 GOVERNING INTERNET OF THINGS

capture. When automated data processing is coupled with automated data capture, we have a lethal
combination that is ideally suited for smart surveillance by parties that are interested in gathering intel-
ligence on other people.

In this chapter we motivated the need for an IoT governance framework and discussed some of the
research issues with respect to such a framework and approaches for realizing such a vision. We posit
that an IoT governance framework could play a key role in data privacy management in addition to
setting the policies governing the operation of lot of Internet connected devices (eg, smartphones, cars)
in smart spaces (eg, homes, cities, etc).

REFERENCES
 [1] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and

future directions. Fut Gen Comput Syst 2013;29(7):1645–60.
 [2] Xu N, Zhang F, Luo Y, Jia W, Xuan D, Teng J. Stealthy video capturer: a new video-based spyware in 3G

smartphones. Presented at the Second ACM Conference on Wireless Network Security; 2009, p. 69–78.
 [3] In: Bessis N, Dobre C, editors. Big data and Internet of Things: a roadmap for smart environments, vol. 546.

Cham: Springer International Publishing; 2014.
 [4] Langheinrich M. Privacy by design—principles of privacy-aware ubiquitous systems. Presented at the Third

International Conference in Ubiquitous Computing, Berlin, Heidelberg; 2001. p. 273–291.
 [5] Benson T, Akella A, Maltz DA. Unraveling the complexity of network management. Presented at the Sixth

USENIX Symposium on Networked Systems Design and Implementation; 2009. p. 335–348.
 [6] Almeida V, Getschko D, Afonso C. The origin and evolution of multistakeholder models. IEEE Internet

Comput 2015;19(1):74–9.
 [7] E. Commission, Report on the Public Consultation on IoT Governance. European Commission; 2013.
 [8] Almeida VAF, Doneda D, Monteiro M. Governance challenges for the Internet of Things. IEEE Internet

Comput 2015;19(4):56–9.
 [9] Weber RH. Internet of things—governance quo vadis? Comput Law Secur Rev Aug 2013;29(4):341–7.
[10] Tang Z, Hu YJ, Smith MD. Gaining trust through online privacy protection: self-regulation, mandatory

standards, or caveat emptor. J Manag Inform Syst 2008;24(2):153–73.
[11] Simonsson M, Johnson P. Defining IT governance – a consolidation of literature. EARP Working Paper

MS103. Stockholm, Sweden: Royal Institute of Technology (KTH); 2005.
[12] Qudrat K, Elahi I. UNDP on good governance. Int J Soc Econ 2009;36(12):1167–80.
[13] DeNardis DL, Raymond M. Thinking clearly about multistakeholder Internet governance. Eighth Annual

Conference of the Global Internet Governance Academic Network (GigaNet), Bali, Indonesia; 2013.
[14] Waz J, Weiser P. Internet governance: the role of multistakeholder organizations. J Telecomm High Technol

Law 2013;10(2).
[15] Krämer J, Wiewiorra L, Weinhardt C. Net neutrality: a progress report. Telecommun Policy 2013;37(9):

794–813.
[16] Butler K, Farley TR, Mcdaniel P, Rexford J. A survey of BGP security issues and solutions. Proc IEEE

2010;98(1):100–22.
[17] Langheinrich M, Finn R, Coroama V, Wright D. Quo vadis smart surveillance? How smart technologies

combine and challenge democratic oversight. In: Gutwirth S, Leenes R, De Hert P, editors. Reloading data
protection. Dordrecht: Springer; 2014.

[18] Karat J, Karat CM, Bertino E, Li N, Ni Q. Policy framework for security and privacy management. IBM R&D
J; 2009.

[19] Bertino E, Brodie C, Calo S, Cranor LF, Karat C-M, Karat J, Li N, Lin D, Lobo J, Ni Q, Rao P, Wang X.
Analysis of privacy and security policies. IBM R&D J 2009;53(2):3:1–13.

http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00012-5/ref0040

237REFERENCES

[20] Norman D. The design of everyday things. New York, NY: Basic Books, Inc; 2002.
[21] Mansfield-Devine S. Interview: BYOD and the enterprise network. Comput Fraud Secur 2012;2012(4):14–7.
[22] Morrow B. BYOD security challenges: control and protect your most sensitive data. Netw Secur

2012;2012(12):5–8.
[23] Nastic S, Inzinger C, Truong HL, Dustdar S. GovOps: the missing link for governance in software-defined

IoT cloud systems. Presented at the Workshop on Engineering Service-Oriented Applications; 2014.
[24] Nastic S, Vögler M, Inzinger C, Truong H-L, Dustdar S. rtGovOps: a runtime framework for governance in

large-scale software-defined IoT cloud systems. Presented at the Third IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering (MobileCloud); 2015. p. 24–33.

[25] Van Kranenburg R, Bassi A. IoT challenges. Commun Mob Comput 2012;1(1):9.
[26] Langheinrich M. A privacy awareness system for ubiquitous computing environments. Presented at the Fourth

International Conference on Ubiquitous Computing; 2002. p. 237–245.
[27] Cranor LF. P3P: making privacy policies more useful. IEEE Secur Priv 2003;1(6):50–5.
[28] Smart Sheriff, Wikipedia [Online]. https://en.wikipedia.org/wiki/Smart_Sheriff
[29] Majoo F. Giving drone industry leeway to innovate. The New York Times [Online]. http://www.

nytimes.com/2015/02/05/technology/personaltech/giving-the-drone-industry-the-leeway-to-innovate.
html?ref=technology&_r=0

[30] Perry T. California’s no drone zones. IEEE Spectrum [Online]. http://spectrum.ieee.org/view-from-the-valley/
robotics/aerial-robots/californias-no-drone-zones/?utm_source=techalert&utm_medium=email&utm_
campaign=021215

[31] Krioukov A, Fierro G, Kitaev N, Culler DE. Building application stack (BAS). Presented at the ACM BuildSys
(in conjunction with ACM SenSys), New York, New York; 2012. p. 72–79.

[32] Dawson-Haggerty S, Krioukov A, Taneja J, Karandikar S, Fierro G, Kitaev N, Culler D. BOSS: building
operating system services. Presented at the 10th USENIX Conference on Networked Systems Design and
Implementation; 2013.

https://en.wikipedia.org/wiki/Smart_Sheriff
http://www.nytimes.com/2015/02/05/technology/personaltech/giving-the-drone-industry-the-leeway-to-innovate.html?ref=technology%26_r=0
http://www.nytimes.com/2015/02/05/technology/personaltech/giving-the-drone-industry-the-leeway-to-innovate.html?ref=technology%26_r=0
http://www.nytimes.com/2015/02/05/technology/personaltech/giving-the-drone-industry-the-leeway-to-innovate.html?ref=technology%26_r=0
http://spectrum.ieee.org/view-from-the-valley/robotics/aerial-robots/californias-no-drone-zones/?utm_source=techalert%26utm_medium=email%26utm_campaign=021215
http://spectrum.ieee.org/view-from-the-valley/robotics/aerial-robots/californias-no-drone-zones/?utm_source=techalert%26utm_medium=email%26utm_campaign=021215
http://spectrum.ieee.org/view-from-the-valley/robotics/aerial-robots/californias-no-drone-zones/?utm_source=techalert%26utm_medium=email%26utm_campaign=021215

Page left intentionally blank

239

CHAPTER

TinyTO: TWO-WAY
AUTHENTICATION FOR
CONSTRAINED DEVICES IN
THE INTERNET OF THINGS

C. Schmitt, M. Noack, B. Stiller
Communication Systems Group CSG, Department of Informatics IFI, University of Zurich, Zurich, Switzerland

13.1 INTRODUCTION
Atzori et al. already stated in 2010 that the Internet of Things (IoT) consists of manifold devices, rang-
ing from IP networks and servers to small devices such as Wireless Sensor Network (WSN) devices
(e.g., Radio-Frequency IDentification (RFID) tags or sensor nodes) [1]. Throughout the years, espe-
cially WSN consisting of constrained devices with limited resources in memory, energy, and compu-
tational capacity, rapidly gained popularity. Thus, the questions raised of how to integrate them into
the IoT and what challenges occur when looking at their constrained resources [2–4]. The number of
possible deployments of such networks rises, and more applications have a need for confidential and
authenticated communication within the network. This security issue must be addressed, due to the fact
that sensitive information (e.g., identity (ID), names, or Global Positioning System (GPS) information)
is linked almost everywhere to all kinds of collected data, such as temperature, sound, and bright-
ness [5–7]. Hence, collected data is no longer anonymous and is often desired to be kept confidential.
Fig. 13.1 illustrates this case for a building scenario, where environmental data is collected in rooms
and transmitted over multiple hops to the gateway in order to make the data available to applications,
such as climate control, security office, and room calendar (Section 13.5). If room information can be
retrieved by eavesdropping due to missing security in the communication, then an attacker would be
aware of sensitive information and could plan, for example, a burglary. Therefore, collected data must
be transmitted in a secure manner and/or over a secure channel providing end-to-end security, giving
only authorized entities (e.g., gateway, security system, or company members) access to this confiden-
tial information. But how is this supposed to be done? Keeping in mind that WSNs are part of the IoT
and consist of constrained devices with limited resources, any security risks are aggravated by WSN
design and security requirements of the IoT. Ultimately, an end-to-end security solution is required to
achieve an adequate level of security. Protecting data only after it leaves the scope of the local network
(e.g., WSN) is not sufficient.

Using existing technologies (e.g., Secure Sockets Layer (SSL)/Transport Layer Security (TLS)
[8] or cryptography [9,10]) is the easiest way to achieve the goal of secure data- transmission. But
this becomes increasingly challenging when looking at WSN devices used today (e.g., RFIDs, heart
beat monitor, or environmental sensors), as their resources are strictly limited in memory, power, and

13

240 CHAPTER 13 TinyTO

computational capacity [11,12]. Those WSN devices are divided into constrained classes correspond-
ing to their computational capacity and memory resources (Table 13.1) [11]. Security support is very
challenging when assuming they are Class 1 devices (e.g., TelosB [13]), as done for the proposed solu-
tion TinyTO, because they offer only about 10 kByte RAM and 100 kByte ROM. A standard approach
for securing communications in the Internet is SSL/TLS [8], relying on asymmetric cryptography such
as RSA, which requires many resources and computational capacity, and, thus, is only feasible for at
least Class 2 devices (which have approximately 50 kByte RAM and 250 kByte ROM) [14]. Additional
challenges are the device diversity in today’s WSNs, the network size itself, and multiple requirements
(e.g., lifetime or security support) due to the target application [3]. Developing a proper solution is still
a challenge, especially for security issues under consideration of the aforementioned challenges and
constraints. Depending on the application, it might be prohibited to reuse existing solutions (e.g., mili-
tary area). In general, it is preferred to either reuse standards or to develop a generic solution that can be
integrated without major modifications and would not require hardware features such as cryptographic
coprocessors [14], certain radio modules, or specific processors. On the software side, it would not re-
quire a specific protocol stack, but it would rely on the most basic interfaces, and be kept separate from
applications in order to allow simple integration into any used protocol-stack with a limited number of
connection points (i.e., interfaces). Furthermore, all additional features have to avoid affecting exces-
sive performance- and memory-consumption.

Table 13.1 Device Classes (1 KiB = 1024 Byte) [11]

Name RAM ROM IP Stack Security

Class 0 ≪10 KiB ≪100 KiB NO NO

Class 1 ∼10 KiB ∼100 KiB CoAP [15], BLIP
[16,17]

YES

Class 2 ∼50 KiB ∼250 KiB HTTP, TLS YES

FIGURE 13.1 Building Scenario

24113.2 SECURITY ASPECTS AND SOLUTIONS

Based on the aforementioned hardware and application requirements, the proposed security solu-
tion TinyTO, an optimized two-way authentication solution for tiny devices, provides confidential data
transfer with an additional integrity protection and data authentication, as well as a two-way authentica-
tion between sender and receiver of messages, delivering end-to-end security even for Class 1 devices.
This is achieved by introducing an efficient handshake with a direct authentication and key exchange
between pairs of nodes in the network, thus setting up an encrypted data transfer with an integrated en-
cryption scheme. To minimize overall hardware requirements, the Elliptic Curve Cryptography (ECC)
is used for key generation, key exchange, encryption, decryption, and signature generation.

Initially, each node is only familiar with the gateway. This relationship is authenticated with an
individual shared key (in TinyTO of 16 Byte length), which is only known to the gateway and to the
node, and is deployed to all nodes during the initial programming routine. Individual keys between
nodes are either established during the handshake performance or can be requested by a node from the
gateway (e.g., in case of communication with the aggregator).

TinyTO is designed to fit WSN requirements, is application-independent, and allows for an easy
integration into existing applications due to its modular nature. TinyTO explicitly supports in-network
aggregation by enabling a full and secure end-to-end communication without the need for a network-
wide shared secret.

In the following, all data that is transmitted in data packets is considered to be confidential. The
remainder of this chapter is structured as follows. Section 13.2 introduces relevant work in the area of
pre-shared keys (PSK), ECC usage, and authentication without any special requirements to infrastruc-
ture. Afterward, Section 13.3 presents the design decisions for TinyTO, followed by a detailed descrip-
tion of the proposed solution TinyTO within Section 13.4. The approach is evaluated in Section 13.5
with respect to resource consumption, runtime performance, and security aspects. Finally, Section 13.6
summarizes the chapter.

13.2 SECURITY ASPECTS AND SOLUTIONS
The necessity of providing an end-to-end security solution in WSNs is not entirely new. Over the years,
different approaches have emerged that address various security issues.

Thus, an often-quoted solution is to predistribute symmetric keys. However, flexibility of the deploy-
ment, connectivity between nodes, and resilience against attackers is limited significantly [18]. Instead,
Du et al. proposed a solution that applies public key authentication to smaller-resource-demanding
symmetric key operations, where a one-way hash function is used to authenticate public keys. The
basic idea is to allow for individual nodes to verify that a transmitted public key matches the claimed
identity, without relying on a trusted third party (e.g., Certificate Authority (CA)). For an exhausting
mapping among all keys and identities, a large number of keys and certificates must be stored on every
node, which is not feasible. Hence, a hash function, mapping from identity to the hash value of the cor-
responding public key, is preshared. Thus, only hash values and identities must be compared, which
requires only a fraction of the memory and computational power. This can be optimized further by
using Merkle Trees, in which nonleaf nodes are labeled with the hash of the labels of its children [19].

ECC determines a promising option for WSN security solutions, in particular, for message en-
cryption, because ECC can deliver strong security with only a small amount of resources needed, as
denoted in [20–22]. A 192-bit ECC key provides the same level of security as an RSA-key in the range

242 CHAPTER 13 TinyTO

of 1024 bit to 2048 bit [23]. ECC is viable for key generation, key exchange, encryption, decryption,
and signatures, especially in resource-constrained applications.

Nie et al. developed the HIP DEX protocol for hop-by-hop secure connections using a Diffie–
Hellman key exchange for public keys and the AES encryption for the session key-exchange [24].
Computational requirements are reduced by limiting cryptographic primitives to a minimum (e.g., re-
moving expensive signature algorithms and any form of cryptographic hash functions). Cryptographic
challenges are included in the first messages of the handshake proposed, in order to avoid flooding at-
tacks. Identity authentication is achieved by password verification within the handshake, where nodes
need to know their respective passwords in advance.

The PAuthKey protocol for application-level end-to-end security overcomes the problem of two-
way authentication (i.e., mutual authentication) between sensor nodes [25]. It provides pervasive light-
weight authentication and keying mechanisms, allowing nodes to establish secure and authenticated
communication channels with each other. PAuthKey employs ECC-based implicit certificates, using a
trusted central CA to handle authentication security. Thus, it stands in contrast to other authentication
approaches, as certificates are generally considered to be resource-challenging for WSNs, and they
require additional hosting infrastructure (e.g., CA) or hardware (e.g., Trusted Platform Module (TPM))
that can be integrated on the gateway or as an external network entity.

The UbiSec&Sens project offered a toolbox of security-aware components. The proposed Zero
Common Knowledge (ZCK) protocol for authentication can establish well-defined pairwise securi-
ty associations between entities, even in the absence of a common security infrastructure and pre-
shared secrets [26]. ZCK authentication is based on re-recognition between entities, allowing entities
to authenticate any other entity known from the past. This approach does not provide full security, as
required, for instance, for financial transactions because the first contact between entities cannot be
authenticated. However, in a scenario without any form of preestablished knowledge or a trusted third
party, ZCK provides the best level of security that can be achieved under those limitations given. The
ZCK protocol itself does not cater to a key exchange, but can be used in combination with any form of
cryptography, such as Diffie–Hellman [27].

TinyDTLS—a DTLS-based solution for constrained (tiny) devices—provides end-to-end security,
but targets Class 2 devices with additional memory resources [14]. In this case the platform used in-
cludes a TPM, offering additional dedicated memory and computational power for costly security func-
tions. TinyDTLS performs a TLS handshake, using X.509 certificates for authentication and Advanced
Encryption Standard (AES) for encryption, but still exceeds most alternatives, due to the high amount
of available resources on its target devices. An advantage of using this solution is its compatibility with
established standard protocols such as SSL/TLS [8].

The security aspects addressed by TinyTO are a direct result of the aforementioned existing solu-
tions and of the final design-decisions taken in the upcoming Section 13.3, especially to counter Un-
known Key-Share Attacks (UKSA) and Man-In-The-Middle (MITM) attacks. Therefore, TinyTO’s
goals are summarized as:

1. TinyTO brings end-to-end security to Class 1 devices by providing two-way authentication.
2. The TinyTO’s handshake design with two-way authentication adds immensely to the security level

without an involvement of certificates and CA in the network’s infrastructure, or special hardware
components such as TPM on the device.

3. TinyTO is protected against MITM attacks, in contrast to other solutions, such as UbiSec&Sens
and ZCK, for Class 1 devices.

24313.3 DESIGN DECISIONS

4. TinyTO allows for adding devices dynamically to the secure network, in contrast to static Merkle
Trees.

5. TinyTO uses the Routing Protocol for Low power and Lossy Networks (RPL) [17,28], which
offers various measurements to improve routing, which, in turn, can be used for an attack
detection and defense.

In order to address these goals, TinyTO requires preprogrammed master keys for authentication
between devices and the gateway, RPL routing, and support of an ECC functionality for encryption
and signing.

13.3 DESIGN DECISIONS
An ideal solution for the two-way authentication should work generically on WSN nodes of all classes,
especially because the trend goes toward heterogeneous WSNs. However, because WSN nodes are
primarily designed to collect data, they prioritize frugality and longevity over processing-power and
memory size. Section 13.1 has outlined that Class 1 devices are, by definition in RFC 7228 [11],
very constrained to run security schemes beyond the very specific implementations mentioned in
Section 13.2. Thus, the newly proposed end-to-end security solution in this chapter targets Class 1
devices as a minimum requirement. Even though Class 1 devices can connect to the Internet without
additional proxies or gateways, they are limited in communication with peers, if those peers have a full
protocol-stack employed [11], which would overwhelm available resources of Class 1 devices. There-
fore, Class 1 devices require a specifically designed protocol-stack for constrained devices, such as the
Constrained Application Protocol (CoAP) over User Datagram Protocol (UDP) [15]. Consequently,
traditional security concepts for wireless networks, such as Wired Equivalent Privacy (WEP) or TLS
in their native form, are unsuitable for WSNs, as pointed out in [29].

One approach to adapt the traditional Public-Key Cryptography (PKC) to WSNs (cf. Section 13.2)
is the integration of extra hardware into nodes [18], for performing security operations and operations
that are separate from the main application and the node processor. At first glance, Class 2 devices have
more resources and can be used for this purpose [11]. Among other functionalities, Class 2 devices can
deliver Internet-level security by providing confidentiality and message authentication at high speed
[14]. Hu et al. have shown that a TPM chip outperforms most alternative solutions of similar resource
levels [30]. But at second glance, as a drawback, all nodes in a WSN need to be equipped with an ap-
propriate amount of resources (e.g., more RAM/ROM or using a TPM) to apply the security scheme
network-wide.

A Class 1 device cannot build and maintain an RFC-compliant PKI while executing its main task—
data collection and data forwarding—that is already resource-consuming in itself. One commonly used
OpenSSL X.509 RSA-1024 certificate alone has a size of about 800 Byte [31], and adding the cor-
responding RSA key pair to this takes an additional 800 Byte [32]. Assuming an aggregation support,
n + 2 certificates and n + 2 key pairs for a degree of aggregation (DOA) of n must be stored, quickly
filling the available memory. For example, following those calculations, an aggregator with DOA = 5
needs to store an additional 11.2 kByte of data, only for certificates and corresponding key pairs.

This extreme memory consumption can be avoided by utilizing PKC only between designated
node pairs (cf. Section 13.2), so that every node (aggregator or collector) only has to store its own key
pair and the public key of the given recipient (ie, gateway or next hop). Gura et al. showed the general

244 CHAPTER 13 TinyTO

feasibility of PKC on simple 8-bit processors, as typically found within WSN nodes [33]. Therefore,
TinyTO’s security solution is based on PKC. Furthermore, memory and energy-consumption savings
are gained by applying ECC instead of RSA (Rivest, Shamir, and Adleman) for key generation, key
exchange, signatures, and encryption. The National Institute of Standards and Technology (NIST)
recommends that SP 800-57 explains that an RSA key in the range of 1024–2048 bit delivers the same
security level as a 160-bit ECC key, that is, the same amount of resources is required to break them
[23]. Even more, Arvinderpal et al. showed that ECC implementations are faster and require less en-
ergy compared to equally secure RSA algorithms [32].

In general, standardization bodies and researchers agree on a set of security objectives that are
necessary to achieve information security: confidentiality, integrity, authenticity, availability, and
accountability of all messages, as defined in [34–36]. Furthermore, a set of requirements that are
particular to WSNs and to the development goals for TinyTO must be considered: (1) End-to-end
security to prevent eavesdropping and spoofing attacks, meaning risk for the communication be-
cause the underlying network infrastructure is only partially under the user’s control and might be
compromised. Especially in a WSN, where multi-hop communications are common, authentication
and key exchange are essential design goals. (2) In WSNs, connections are often not lossless. Trans-
mission Control Protocol (TCP) erroneously invokes congestion-control mechanisms to counter the
loss of packets, which drastically impact the performance, and results in the UDP to serve as a better
choice for WSNs [37]. (3) Two-way authentication denotes two entities authenticating each other
at the same time [38]. In the scope of WSNs, it is not sufficient to authenticate only the sender to
the receiver, but the sender has to be sure also about the identity and authorization of the potential
receiver of confidential information. (4) ECC is promising to save resources, when performing PKC
in TinyTO. For message encryption an Integrated Encryption Scheme (IES) is applied, especially to
harness the speed-advantage of symmetric encryption for large amounts of data without the draw-
back of a repeated key-exchange for every transmission, which otherwise is necessary so that no
secret credential would be used more than once.

Diffie et al. argued that an authentication protocol should always be linked to the key exchange for
later encryption, otherwise an attacker might just wait until the authentication is completed to compro-
mise the established communication channel thereafter [39]. Canetti et al. summarized the objective of
a key-exchange protocol in a very intuitive way: A key-exchange protocol is secure, if it is impossible
or at least infeasible for an attacker to distinguish the generated key from a random value [40]. The
same fundamental concept can be applied to the Authenticated Key Exchange (AKE) protocol. But
additionally, entity (or party) authentication has to guarantee the identity of communicating parties in
the current communication session, and, therefore, has to prevent impersonation [41]. A good authen-
tication protocol combines several properties, as explained by various researchers [39,42–45], and is
relevant to TinyTO’s design: (1) Forward secrecy guarantees, such that, if a generated private key of
one or more of the participating entities is compromised, the security of previous communications is
not affected. (2) Asymmetry of messages is required to prevent reflection attacks, where one entity
simply replays the same message back to the sender; it is desirable to avoid symmetries. In other words,
the authentication responses of two different parties must not be identical. (3) Direct authentication is
provided by a protocol if the authentication is completed in a successful handshake, that is, if both par-
ties have proven knowledge of the shared secret. (4) Timestamps are to be avoided, because not every
participating entity can be expected to maintain a reliable local clock, which must be synchronized
periodically, too.

24513.4 TinyTO PROTOCOL

13.4 TinyTO PROTOCOL
Due to TinyTO’s main goal of supporting an end-to-end security with two-way authentication on Class
1 devices, the authentication protocol has to always include a key exchange, such that several possible
handshake candidates can be considered in practice, leading to the final design and implementation
of TinyTO. First, handshake candidates for TinyTO and their drawbacks are introduced. Second, the
resulting TinyTO handshake, including two-way authentication purposes and aggregation support, are
described. Finally, key information on the respective implementation is presented.

13.4.1 POSSIBLE HANDSHAKE PROTOCOL CANDIDATES
Handshake protocol candidates considered in this section support a two-way authentication of two
independent entities without prior information exchange, which make them highly appropriate for Ti-
nyTO. From this stage on, the traditional naming pattern of cryptography is applied to protocol descrip-
tions, assuming two communication parties—Alice and Bob—which are instantiated as sensor nodes.

At first glance the Station-to-Station protocol (STS) seems to be an ideal candidate for TinyTO be-
cause STS is based on a Diffie–Hellman’s key exchange, followed by an exchange of authentication
signatures [41]. Both parties, Alice (A) and Bob (B), compute their private key x and a public key X
in the beginning. Next, Alice sends her public key XA to Bob. Once Bob receives XA, he can compute
a shared secret KAB with XA and xB, according to the Diffie–Hellman’s key-exchange algorithm [38].
Bob can now encrypt any message to Alice using KAB. For decryption purposes Bob sends XB back to
Alice, so that she can compute the same shared secret KAB. Additionally, Bob sends a token consisting
of both public keys, signed with his own private key to authenticate himself. Alice can use XB to verify
that Bob was indeed the same person who had signed the message and computed the shared secret.
Bob is now authenticated to Alice. As the last step of the two-way authentication, Alice constructs
an authentication message and sends it to Bob to authenticate herself to Bob. To avoid unnecessary
communication overhead, the second key-exchange message is combined with the first authentica-
tion message. As a result, STS entails the establishment of a shared-secret key between two parties,
with mutual entity-authentication and mutual implicit key-authentication [38]. The forward secrecy
can be provided by deriving a new ephemeral key from the shared secret for the encryption of every
message in that exchange [46]. The signatures are used to obtain protection against impersonation
during the exchange.

However, there are two main shortcomings: (1) Although the STS is relatively simple to execute,
it does not include any explicit key-confirmation. Neither Bob nor Alice inherently can be sure that
the other party has actually computed a shared secret without additional messages. (2) Furthermore,
STS is vulnerable to UKSAs and the MITM attack [41]. To prevent UKSAs and to provide explicit
key-authentication, the signatures used can be encrypted additionally with the successfully computed
KAB [39]. Thus, Bob is assured that he shares KAB only with one single party, namely Alice. Because
he has created XB specifically for this handshake and Alice has signed XB and XA, her signature is now
tied to this particular handshake. By encrypting the message with the resulting KAB, Alice assures Bob
that she was indeed the entity who had created XA. Similar assumptions can be made from the position
of Alice [39]. This modification requires more computational capacity, due to parallel execution of
signature and symmetric encryption algorithms. Hence, for WSN devices below Class 2, it is desirable
to avoid this sort of overhead. The need for encryption can be resolved by including the identity of both

246 CHAPTER 13 TinyTO

parties in the exchanged signatures, resulting in the adapted STS protocol [46]. When combining the
adapted STS with identities in signatures it becomes almost functionally identical to the Bellare–Ca-
netti–Krawczyk protocol (BCK) [42,43,46]. The only difference in BCK is the absence of the sending
parties’ identities. According to Basin et al., it is generally desirable to include identities of both par-
ties, to avoid the spoofing of identities [47]. But in a bidirectional exchange, as is the case for BCK, it
is only required to include the receiver’s identity [47]: at least in one direction, the receiving party is
presented with an invalid signature that does not contain its own identity, and as a result it immediately
aborts the handshake.

At this point, BCK is computationally relatively inexpensive, but still vulnerable to MITM attacks
[46]. This weakness boils down to the fact that it is impossible to reliably map a public key to a specific
entity, that is, to derive their public key from their identity. Any party can claim any public key as its
own. To counteract, it is essential to strongly couple a public key with the respective identity. The
prevalent solution for this is to introduce a PKI with certificates and trusted CAs, as proposed for TLS
[48]. A certificate contains the identity and the corresponding public key. Entities can be assured of the
correct coupling between key and identity, because trusted CAs had constructed the certificate. How-
ever, BCK itself does not suit the given requirement of Class 1 devices, but can be used as a baseline,
as justified in the upcoming section.

13.4.2 BCK WITH PRESHARED KEYS FOR TINYTO
Badra et al. have outlined that PSK is suitable to provide authentication [49], while requiring only a
small amount of computational power and memory. Thus, it is selected for TinyTO to verify the iden-
tity of an entity. The distribution of PSKs is simple in the context of WSN devices: Adding a unique
PSK to the programming procedure introduces practically no overhead because nodes need to be pro-
grammed before deployment in any case, and the key generation and management can be moved to the
software programming the nodes. Compared to approaches where every node is equipped with a set of
keys for encryption between peers before deployment, TinyTO assumes that every node has only one
PSK, solely for authentication toward the gateway. The developed handshake for TinyTO compares to
BCK,with preshared keys that form master keys for an initial authentication between the node and the
gateway. Fig. 13.2 illustrates the resulting handshake, where Alice and Bob can represent any one of
the following device types in the WSN:

FIGURE 13.2 Extended BCK Protocol With PSK for TinyTO

247

• A collector is a device-collecting sensor, which forward them directly to the next device within
communication range.

• An aggregator works with the data received, either as aggregating several messages into one large
message, or preprocessing data (e.g., average, max, min calculation of values) before forwarding
them to the next device within communication range.

• The gateway defines the gate to the world, connecting the WSN to other applications in the IoT
domain.

Under the assumption that only the two parties under investigation have knowledge of the PSK,
each party can be assured that indeed the other communication party uses this PSK. It is vital not to
transmit the PSK in plaintext during the authentication, in order to keep the PSK a secret between the
two parties. Otherwise any attacker who picks up that message containing the PSK can use the PSK.
Thus, it must be avoided to send any form of information that can (1) be used to retrieve the PSK or
(2) be replayed to achieve authentication for any other entity. Traditionally, those two goals are met by
transmitting a cryptographic hash digest of the PSK together with a cryptographic nonce [50]. Includ-
ing a different nonce in every message makes it impossible to reuse an authentication message (e.g.,
replay attack). In comparison, TinyTO desires to couple a unique public key with the PSK (and, thus,
the identity), which may be replayed several times, but never for another public key, which makes it
very hard to recalculate the PSK by an attacker. Hence, it is possible to use the public key instead of
a random nonce and to create a hash from the PSK and from this public key, that is, H(K, XA). This
ensures Bob that XA is indeed Alice’s public key [51,52]. A cryptographic hash function is infeasible
to be reverted, even with a partially known input (the public key is obviously publicly known). But
the PSK is not recoverable [52]. At the same time, a spoofed hash digest for a different public key can
be produced only with the knowledge of the PSK. To provide mutual authentication in the TinyTO
protocol, those digests must be computed from both parties, with their respective public keys. To avoid
transmission overhead, these digests can be included in the first and second handshake messages (HS1
and HS2 in Fig. 13.2) in order to avoid any transmission overhead by additional messages.

In accordance with the requirements for TinyTO, this approach determines the two-way authentica-
tion protocol, which includes, as the key agreement, delivering a direct and explicit key authentication
[53]. Messages do not include timestamps, they are completely asymmetrical, and they cannot be used
for a replay or for reflection attacks. Appropriate encryption techniques (e.g., RSA or AES) of subse-
quent messages are required to guarantee the forward secrecy beyond the handshake.

As explained in Section 13.3, two flexible roles—collector and aggregator—are possible for a node.
The gateway, in contrast, is unique and static. Collectors and aggregators use TinyTO to establish
a secure communication channel with the gateway. Aggregators introduce additional performance-
overhead to TinyTO and the WSN, because the handshake is more complicated (Fig. 13.3). Also, the
collectors need to switch the destination of their data stream from the gateway to the aggregator, which,
in turn, needs to process the information. Therefore, the aggregator sends a presence announcement
via a broadcast to collectors that redirect their streams upon receipt. Schmitt et al. stated that four
conceptual steps are required for an aggregator introduction, if no authentication is required [12]. The
TinyDTLS solution [14] inspired the development of TinyTO. [14] specifies four steps that must be tak-
en in order to establish a two-way authentication, and those steps must be slightly adapted for the pro-
posed TinyTO solution in the following manner: (1) Collectors complete their TinyTO handshake with
the gateway (Fig. 13.2) and transmit data over a secure channel. (2) In turn, the aggregator can be acti-
vated, contacting the gateway immediately, and executing the TinyTO handshake, resulting in a secure
channel. (3) The aggregator broadcasts its presence to collectors in range that are programmed to wait

13.4 TinyTO PROTOCOL

248 CHAPTER 13 TinyTO

for such a specific message type (e.g., simple echo request, counter, or nonce). The aggregator’s public
key is included in the broadcast message to avoid additional message exchanges. (4) Finally, collectors
redirect their streams, encrypted with the aggregator’s public key E M({ })XA

, to the aggregator. The ag-
gregator decrypts incoming streams, processes messages, encrypts the results again, and sends the new
message securely to the gateway E M({ })XG

 or to the next hop.
Although the previously described approach of aggregator integration provides an encryption of mes-

sages among all parties, and, therefore, a protection against eavesdropping between collectors and the ag-
gregator as well as the aggregator and the gateway, it entails one important drawback, which we will now
explain. Collectors have executed the complete TinyTO handshake with the gateway, resulting in a two-
way authentication of both parties. However, in the aforementioned steps (3) and (4), collectors sacrifice
all assertions about identities, if they blindly react to the aggregator’s broadcasts. Attackers just need to
broadcast an aggregator announcement to reach access to data streams from every collector in range that
is conveniently encrypted with the attacker’s own public key. Because such a situation breaks the entire
security concept, collectors are requested to establish a new secure channel to aggregators, which fulfill
TinyTO’s design principles without blindly trusting aggregator broadcasts. Consequently, the authen-
tication needs to be extended by an authorization: collectors need the confirmation that a broadcasting
aggregator is a valid aggregator and not an intruder who is trying to access confidential information.

Assuming that collectors or aggregators communicate only with the gateway, the request for secure
communication is implicitly covered by the exchange of preprogrammed PSKs. Intuitively, it is pos-
sible to preprogram aggregators and collectors with pairwise PSKs in the same way, followed by a
handshake execution, including the authentication and the key exchange. But this workaround does not
fulfill the flexibility requirement for TinyTO: in this case, aggregators can only aggregate data streams
from predefined collectors and will further need to hold n + 1 PSKs for n collectors. A more flexible
and less resource-demanding solution is to lever the already fully authenticated and secured channels
between both aggregator and collector, and the gateway (Fig. 13.3). Upon receipt of an aggregator
announcement, collectors need to check only with the fully authenticated gateway, whether the broad-
cast sender is an authorized aggregator. If so, the gateway can reply with the aggregator’s public key,
signed by his own trusted private key. This is similar to a PKI, where the gateway takes the role of the

(E{M}XA)

(E{M}XG)

FIGURE 13.3 Secure Aggregation Support

249

certificate authority as a trusted third party. For TinyTO it is assumed that all parties have completed
previously and successfully their handshakes with the gateway. The signature is used in order to verify
the mapping between the aggregator’s public key and its identity, which makes spoofing attacks on the
public key impossible. This stands in contrast to the previously exchanged authentication messages,
where the identity of the receiving party must be included instead of the key owner’s identity because
the channel between gateway and collector is already authenticated. The aggregator’s identity is not
encrypted between the collector and the gateway, allowing for spoofing attacks on the identity because
expensive computations would be required for this additional encryption. Hence, it is substituted with
the identity in the signature from the next message, computed by the more powerful gateway. The
gateway might reply with the public key for a spoofed identity, but it is detectable by the collector due
to the invalid signature, resulting in the process’ abortion.

13.4.3 HANDSHAKE IMPLEMENTATION
From now on, it is assumed that TinyTO is implemented in TinyOS, where different components are
“wired” to each other and use the offered set of functionality. Thus, the TinyTO handshake is imple-
mented in the component HandshakeHandler, which is exclusively responsible for handshake-message
handling, including message composition and reply handling. HandshakeHandler is wired to com-
ponents called in for cryptographic functions. The three TinyTO handshake messages HS1 to HS3
(Fig. 13.2) are implemented in a similar manner. Listing 13.1 shows a model of the structure of hand-
shake message HS2, where nx_uint8_t stands for the network-serializable unsigned integer type.

The msgType field is used to distinguish between handshake messages and other types of control mes-
sages that are sent via the same port. hsType identifies different handshake messages HS1, HS2, and HS3.
Furthermore, public ECC keys are broken down into x- and y-coordinates [39,41] for easy handling on the
node’s side. Elliptic Curve Digital Signature Algorithm (ECDSA) signatures are defined as integer key
pairs, written as (r, s), and, therefore, difficult to include in a fixed-length packet, because the bit length of
the hexadecimal representation of large integers may vary. Actual length detection and signature process-
ing is not complicated, but the TinyECC library is very selective on input parameters and requires accu-
rate length information before a signature validation. As a consequence, the signature in HS2 is encoded
in the Abstract Syntax Notation One (ANS.1), inherently including length information for r and s [53].

The reply can be sent with two plain fixed-length arrays for the signatures, because the powerful gate-
way can handle the necessary computations to strip any padding and to encode the signature correctly.
Thus, the computation time on the node is minimized. Similar to the three handshake messages, the two
necessary authentication messages of the aggregator to the collectors are implemented (Fig. 13.3). The

13.4 TinyTO PROTOCOL

LISTING 13.1 Example of Handshake Message

250 CHAPTER 13 TinyTO

aggregator’s verification message 1 (AV1), sent from the collector to the gateway upon receipt of the
aggregator announcement, includes msgType, hsType, and the aggregator address. Additionally, AV2,
sent from the gateway to the collector, includes the public agg x, public agg y, and a signature from the
previously authenticated gateway, confirming the aggregator’s public key with the given address. [53]

13.5 EVALUATION
TinyTO is evaluated for memory and energy consumption, and its ability to fit those requirements of
Class 1 devices. Furthermore, the performance is analyzed and the security level is compared to related
work. In order to show the feasibility of TinyTO for Class 1 devices, TelosB nodes are used exclusively
in a testbed for evaluation purposes. TinyOS is the operating system chosen for the current implementa-
tion. A simplified setup for the testbed is shown in Fig. 13.1, and the following situation is assumed: In
Rooms A, C, and D the light is turned off and the room temperature is low. Sensors in Room B report
lights being switched on and the microphone shows a high noise-level. All data collected is sent either
directly (see Room B—use-case 1) or via multiple hops (see Rooms A, C, and D—use-case 2) to the
gateway. Software on the gateway can analyze the data collected and sends corresponding information
to other systems (e.g., climate control or room-booking system). The analysis result for Room B indi-
cates that a conference takes place, and, thus, the climate control is activated and an entry is made in
the room’s calendar that Room B is currently occupied. For Rooms A, C, and D the internal room-lock
system is informed that these rooms are empty and shall be locked automatically. In this example, the
addressing of inconspicuous data can lead to the claim that confidential information collected allows for
conclusions about room occupancy. Additionally, this introduces security risks in the application, as in
the case of room information being retrieved by eavesdropping due to missing security in the commu-
nication of those sensors, an attacker can become aware of this situation and could plan for a burglary.

13.5.1 MEMORY CONSUMPTION
TinyTO’s main challenge was to require only a small part of the resources available, allowing applica-
tions (e.g., TinyIPFIX [12]) to run, in addition to the security solution. The memory consumption of ap-
plications can be determined for TinyOS directly from the compiling tool, because resources are already
known at the time of compilation. Deactivation of components (e.g., RPL or TinyECC optimizations)
via the compiling tool or by removing components (e.g., TinyTO component or HandshakeHandler) in
the code allows for a recording of the individual memory consumption of TinyTO components, shown
in Table 13.2. The small memory difference between conceptually identical components (handshake
and cryptography) in the collector’s and aggregator’s implementation originates from marginally dif-
ferent use-cases, as described previously and as illustrated in Fig. 13.1. For example, collectors only
need to store one message at a time, but aggregators need additional memory to buffer data before that
aggregation can be performed [12]. Because the memory is statically reserved, the detailed memory
footprint depends on the DOA. Furthermore, collectors only need code for an encryption, whereas
aggregators need code for both the decryption and the encryption. In comparison to aggregators, col-
lectors periodically read their sensor values, which requires additional memory. Overall, this leads to a
ROM consumption of 37,590 Byte purely for the collector and 33,174 Byte for aggregator applications
(including data handling [12] and RPL [17,28]), as shown in Table 13.2, and yields slightly more than

25113.5 EVALUATION

4 kByte of additional free memory for aggregators, which can be used to enable ECC optimizations.
Table 13.3 shows that optimizations have a direct impact on memory consumption and whether they are
used (indicated by X) on TinyTO.

13.5.2 RUNTIME PERFORMANCE
In terms of performance, the slow microcontroller and limited memory have a high impact on all results.
A message size of 116 Byte was assumed, because it is typically used for the application TinyIPFIX
supported [12]. Further collectors do not need to decrypt data. For measurements performed, a timer
was read before and after an operation was executed. The resolution was at 65.53 ms, allowing accurate
measurements within the scope of several seconds. Table 13.4 shows the execution times for various
cryptographic operations in TinyTO’s aggregators and collectors. Aggregators are generally almost
twice as fast as collectors, which is mainly due to more activated ECC optimizations (see Table 13.3).
Liu et al. give a performance evaluation for TelosB, showing the speed for ECC operations, when all
optimizations are used [22]: ECDSA signing takes only about 1.6 s (TinyTO aggregator needs about
5.14 s; TinyTO collector, about 9.28 s), and verification, about 2 s (TinyTO aggregator needs about
10.20 s; TinyTO collector, about 18.51 s). This is much faster than TinyTO, and proves the perfor-
mance limitations due to the restricted memory of chosen hardware (here, TelosB).

Table 13.2 Memory Consumption of Components [53]

Operation

Aggregator Collector

ROM (Byte) RAM (Byte) ROM (Byte) RAM (Byte)

Handshake 1,636 602 1,138 612

Cryptography 11,406 406 9,378 406

TinyTO total 13,042 1,018 10,516 1,018

Data handling [12] 26,904 6,964 31,144 5,478

RPL [17,28] 6,270 498 6,228 1,498

Total 46,216 8,470 48,114 7,994

Table 13.3 Memory Consumption of TinyECC Optimizations [53]

Operation ROM (Byte) RAM (Byte) Aggregator Collector

Barrett reduction 780 114 — —

Hybrid multiplication 12 0 X —

Hybrid square 114 0 X X

Secpt optimization 414 0 X —

Projective coordinates 850 0 X X

Sliding window 206 2350 — —

252 CHAPTER 13 TinyTO

Table 13.5 shows the execution times of composite operations, including transmission times in both
directions and response-calculation times. The fact that the gateway performs faster than nodes has no
influence on the overall result. The value for a message aggregation with DOA = 2 is calculated based
on two decryption operations and one encryption operation on the aggregator.

Based on those results, it is possible to determine the minimal interval t, where collectors send their
encrypted messages and aggregators can still catch up with incoming packets. Once the handshake
is executed, collectors send data after t = 9.41 s, which is the minimal time needed for encryption,
even if data is immediately available. Assuming sufficient memory on an aggregator‘s device is avail-
able for caching packets of degree DOA—plus an aggregate computation—an aggregator requires
t = DOA * 4.96 s + 5.89 s to decrypt incoming messages of the degree DOA and to encrypt the ag-
gregate. For DOA = 2, the aggregator needs t = 15.81 s. This equation does hold for a small degree of
aggregation and small networks (e.g., 20 nodes). The formula for t must be adapted with the required
time for ECIES encryption and decryption, if the aggregator: (1) is more powerful, (2) can support a
greater degree of aggregation, and (3) can perform faster operations, and if the network becomes larger.

13.5.3 ENERGY CONSUMPTION
WSN devices are usually battery-powered and depend on the deployment, which makes an exchange
not very easy. Hence, TinyTO must be energy efficient to avoid a fast battery depletion. TelosB nodes in
the testbed are powered by two off-the-shelf batteries, each with a capacity of 2000 mAh and voltage of
1.5 V, in total delivering U = 3.0 V. Wireless data transmissions and computations in the microcontroller

Table 13.4 Execution Times for ECC Operations [53]

ECC Operation Aggregator (s) Collector (s)

EC Key Generation 4.77 8.77

SHA-1 ≤0.10 ≤0.10

ECDSA Sign 5.14 9.28

ECDSA Verify 10.20 18.51

ECIES Encrypt 5.98 9.41

ECIES Decrypt 4.96 —

Table 13.5 Energy Consumption of Composite Operations [53]

Operation Time (s) Energy (mJ)

Handshake Aggregator 20.14 85.90

Handshake Collector 36.59 154.99

Aggregator verification 18.52 78.58

Message aggregation (DOA = 2) 15.90 68.28

25313.5 EVALUATION

show the largest impact on energy consumption. Auxiliary components, such as LEDs or serial connec-
tors, are not taken into consideration, as they are typically deactivated during a final deployment.

TelosB nodes are equipped with a CC2420 RF chip on the IEEE 802.15.4 2.4 GHz band [54],
which has a maximum output power of −25 to 0 dBm for data transmissions [13]. Assuming 0 dBm,
the current draw for sending (Tx) is at ITx = 17.4 mA and at IRx = 19.7 mA for receiving (Rx) [55,56].
The theoretical transmission rate of the CC2420 is at 250 kbps, but some practical measurements are
as low as 180 kbps. For the purposes of the calculation being as close to reality as possible, it can be
assumed that the full transmission rate R is never actually reached, and R = 220 ± 20 kbps. Knowing
the transmission rate and implementation details of messages (see Section 13.4) allows for the calcula-
tion of the transmission time for each message and the total energy consumption ER as follows: ER
depends on the message size S for a given voltage, a current draw, and a transmission rate, resulting in
ER(S) = U * I * S. In particular, this concerns the data handling with TinyIPFIX [12], the three hand-
shake messages (HS1 to HS3), and the aggregator verification (AV1 and AV2) [53]. In comparison
to ECC operations, TinyIPFIX operations are almost instantaneous and negligible in the light of the
overall energy consumption of TinyTO. Furthermore, messages as outlines in the handshake design
consider only the size of individual data fields in an unencrypted message (see Section 13.4). In reality,
the packets transmitted are much larger than supported by IEEE 802.15.4 on the MAC layer (102 Byte
out of the total frame size of 127 Byte [54]). Hence, packet fragmentation support for TinyTO is essen-
tial. Because 12 Byte are used by TinyOS and the cyclic redundancy check (CRC) for error detection
is added, 90 Byte remain for the actual payload in every message on the MAC layer.

TinyTO handshake messages are not transmitted as plaintext, but in larger Elliptic Curve Integrated
Encryption Scheme (ECIES) cipher texts, requiring 69 Byte [1 Byte to indicate the point compression type,
24 Byte for each Elliptic Curve (EC) point component, and 20 Byte for the message authentication more
than the pure message size]. For example, an HS1 message has a size of 70 Byte and a size of 139 Byte
after encryption with ECIES. Given the maximum payload size of 90 Byte, HS1 is fragmented to fit into
MAC layer packets. Every fragment requires additional headers and other fields (e.g., fragment number
and header field indicating fragmentation). Thus, the effective data size DS, which is transmitted to convey
a payload of size ps = 139 Byte, is calculated as DS = ps + ps/90 Byte * 37 Byte = 213 Byte. Table 13.6
shows the results of these considerations for different message types and the energy consumption for their
transmissions. It can be stated that the energy consumption for HS2 is the highest, with 6.34 mJ, com-
pared to HS1 and HS3, due to its enormous message size of 189 Byte. If a message size is approximately
100 Byte then the energy-consumption levels are around 0.3 mJ.

Table 13.6 Energy Consumption of the Radio Transmission [53]

Message ps (Byte) DS (Byte) Time (ms) Energy (mJ)

HS 1 (Tx) 139 223 8.11 0.42

HS 2 (Tx) 189 300 10.91 0.64

HS 3 (Tx) 114 203 7.38 0.38

AV 1 (Tx) 82 171 6.22 0.32

AV 2 (Tx) 168 242 8.80 0.52

254 CHAPTER 13 TinyTO

Similarly to energy calculations for radio transmissions, the energy consumption of the microcon-
troller (MSP430F1611 16-bit Ultra-Low-Power Micro-Controller Unit (MCU) from Texas Instruments
[57]) for different cryptographic operations can be calculated. The current draw in active mode (i.e.,
only MCU and no radio transmissions) is given as 1.8 mA [55,58]. However, experimental measure-
ments show that the relevant difference between idle and a fully utilized MCU is only at IAM = 1.4 mA.
The formula used to calculate the energy consumption EMCU of the MCU, depending on the computa-
tion time t subsequently, is EMCU(t) = U * IAM * t. As shown in Table 13.7, the energy consumption
differs for the aggregator and the collector, due to different activations of these ECC optimizations.
Given the cost of a radio transmission (see Table 13.6) and the computation of single cryptographic
operations (see Table 13.7), the energy consumption for the entire handshake, and similarly for more
complex sequences of operations, can be calculated. According to the design shown in Fig. 13.2, the
handshake requires six operations: EC Key Generation, sending of HS 1, reception of HS 2, ECDSA
signature verification, ECDSA signature signing, and sending of HS 3. Similarly, the verification of an
aggregator needs three operations (see Fig. 13.3): sending of the aggregator’s identity in AV1, the re-
ception of the signed message containing the public key in AV2, and an ECDSA signature verification.
Aggregation with DOA = 2 requires a combination of the reception of two data packets, including data
collected, two times an ECIES decryption, the ECIES encryption, and the sending of one aggregated
data packet. Table 13.5 shows the corresponding times and energy consumptions.

The battery-powered TelosB requires a minimal voltage of 1.8 V [13], meaning a battery cannot be
depleted to an energy level below 60% of the original charge, otherwise the voltage will drop below
that threshold. Thus, it can be calculated that 12.96 kJ are available in one set of batteries. Measure-
ments show that TelosB nodes draw on average of 70.7 mA, while remaining idle when no sleep
modes for MCU and radio are activated. Thus, the expected runtime without any application is about
12.96 kJ = 61,103 s, or roughly 16 h and 58 min for one 3 V * 70.7 mA set of batteries. If collectors are
programmed to collect, encrypt, and send data in the format proposed by [12], then every interval t, the
impact on the runtime of collectors, and their aggregators can be calculated accordingly. Assuming ev-
ery tenth transmission contains the TinyIPFIX template (only metainformation) instead of a TinyIPFIX
record (data values) and an aggregation with DOA = 2 is performed [12], the same batteries will last for
16 h and 53 min in aggregators (which compares to a reduction of 0.5% or 5 min) and 16 h and 55 min
in collectors (reduction of 0.3% or 3 min), given t = 1 min−1.

Table 13.7 Energy Consumption of Cryptographic Operations [53]

Operation

Aggregator Collector

Time (s) Energy (mJ) Time (s) Energy (mJ)

EC Key Generation 4.77 20.03 8.77 36.83

ECDSA Sign 5.14 21.59 9.28 38.98

ECDSA Verify 10.20 42.84 18.51 77.74

ECIES Encrypt 5.98 25.12 9.41 39.52

ECIES Decrypt 4.96 20.83 — —

255REFERENCES

13.6 SUMMARY
In this chapter, a new handshake for two-way authentication and key-exchange has been introduced,
which provides end-to-end security for Class 1 devices in the IoT domain. The newly developed proto-
col TinyTO is based on the Bellare–Canetti–Krawczyk protocol, with an additional PSK extension for
secure authentication. In order to match major resource constraints, TinyTO applies energy-efficient
ECC operations for cryptographic functions and uses preshared master keys (with a length of 16 Byte)
for an authentication toward the gateway only. Furthermore, TinyTO supports secure data aggregations
with a small overhead, which is the key for today’s IoT applications. Transferring TinyTO to more
resourceful devices will enhance performance, because additional ECC optimizations can be activated
and the responsiveness of the network will increase. Finally, the maximum degree of aggregations can
be increased in these cases, as more memory for buffering data will be available.

ACKNOWLEDGMENTS
This work was partially supported by the FLAMINGO [59] and the SmartenIT [60] projects, funded by the EU
FP7 Program under Contract No. FP7-2012-ICT-318488 and No. FP7-2012-ICT-317846, respectively.

This chapter’s content is based on the Master Thesis [53] performed at the Communication Systems Group of
the University of Zurich, Switzerland.

REFERENCES
 [1] Atzori L, Iera A, Morabito G. The Internet of Things: a survey. Comput Netw, Elsevier, Atlanta, GA, USA.

2010;54:2787–805.
 [2] Alcaraz C, Najera P, Lopez J, Roman R. Wireless sensor networks and the Internet of Things: do we need a

complete integration? In: Proceedings of the first international workshop on the Security of the Internet of
Things (SecIoT). Tokyo, Japan; 2010. p. 1–8.

 [3] Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: a survey. Comput Netw,
Elsevier, Atlanta, GA, USA. 2002;38(4):393–422.

 [4] Perrig A, Stankovic J, Wagner D. Security in wireless sensor networks. Commun ACM 2004;47(No. 6):53–57.
 [5] Hausmann S. Internet of Things—a risk-reward proposition for security professionals, SecurityInfoWatch,

[Online] http://www.securityinfowatch.com/article/11714106/navigating-security-threats-posed-by-internet-
of-things-technology; 2014.

 [6] Weber R. H. Internet of Things—new security and privacy challenges. Comput Law Secur Rev, Elsevier,
Atlanta, GA, USA. 2010;26(No. 1):23–30.

 [7] Medaglia C, Serbanati A. An overview of privacy and security issues in the Internet of Things. The Internet of
Things, Giusto D, Iera A, Morabito G, and Atzori L (Eds.). New York, NY, USA: Springer; 2010. p. 389–395.

 [8] Rescorla E. SSL and TLS: building and designing secure systems. Amsterdam, The Netherlands: Addison-
Wesley Longman; 2000.

 [9] Schmeh K. Kryptografie: Verfahren - Protokolle - Infrastrukturen, vol. 5. Heidelberg, Germany: dpunkt.verlag
GmbH; 2013.

 [10] Katz J, Lindell Y. Introduction to modern cryptography, vol. 2. Boca Raton, FL, USA: CRC Press; 2014.
[11] Bormann C, Ersue M, Keranen A. Terminology for constrained-node networks, RFC 7228, IETF, Internet

Engineering Task Force, Fermont, CA, USA, [Online] http://www.ietf.org/rfc/rfc7228.txt; 2014.

http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0020
http://www.securityinfowatch.com/article/11714106/navigating-security-threats-posed-by-internet-of-things-technology
http://www.securityinfowatch.com/article/11714106/navigating-security-threats-posed-by-internet-of-things-technology
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0030
http://www.ietf.org/rfc/rfc7228.txt

256 CHAPTER 13 TinyTO

[12] Schmitt C, Kothmayr T, Ertl B, Hu W, Braun L, Carle G. TinyIPFIX: an efficient application protocol for data
exchange cyber physical systems. J Comput Commun, Elsevier, Atlanta, GA, USA, 2016;74(2):63–76 DOI:
10.1016/j.comcom.2014.05.012, January 2016.

[13] Advantic Sistemas y Servicios S.L. TelosB CM5000-SMA, [Online] http://www.advanticsys.com/shop/
mtmcm5000sma-p-23.html; 2016.

[14] Kothmayr T, Schmitt C, Hu W, Brünig M, Carle G. DTLS-based security and two-way authentication for the
Internet of Things. Ad Hoc Netw., Elsevier, Atlanta, GA, USA. 2013;11(No. 8):2710–2723.

[15] Shelby Z, Hartke K, Bormann C. The constraint application protocol (CoAP), RFC 7252, IETF, Internet
Engineering Task Force; 2014, Fermont, CA, USA, [Online] http://www.ietf.org/rfc/rfc7252.txt; 2014.

[16] TinyOS: BLIP tutorial [Online]. http://tinyos.stanford.edu/tinyos-wiki/index.php/BLIP_Tutorial; 2016.
[17] Ko J. G., Dawson-Haggerty S, Culler D. E., Hui J. W., Levis P. Connecting low-power and lossy networks to the

Internet. IEEE Communications Magazine, New York, NY, USA, vol. 49, No. 4. New York, NY; 2011. p. 96–101.
[18] Du W, Wang R, Ning P. An efficient scheme for authenticating public keys in sensor networks. In: Sixth ACM

international symposium on mobile ad hoc networking and computing (MobiHoc). Urbana-Champaign, IL,
USA; 2005. p. 58–67.

[19] Devanbu P, Gertz M, Martel C, Stubblebine S. G. Authentic third-party data publication. Data and application
security, Thuraisingham B, van de Riet R, Dittrich K, and Tari Z, (Eds.). vol. 73. New York, NY, USA:
Springer; 2001. p. 101–12.

[20] Chang Q, Zhang Y. P., Qin L. L. A node authentication protocol based on ECC in WSN. In: Proceedings of the
2010 international conference on computer design and applications (ICCDA). Qinhuangdao, Hebei, China;
2010. p. 606–609.

[21] Jeong Y. S., Lee S. H. Hybrid key establishment protocol based on ECC for wireless sensor network.
Ubiquitous intelligence and computing. Lecture notes in computer science, vol. 4611. Heidelberg, Germany:
Springer; 2007. p. 1233–1242.

[22] Liu Y, Li J, Guizani M. PKC based broadcast authentication using signature amortization for WSNs. IEEE
Trans Wireless Commun, New York, NY, USA: 2012;11(6):2106–15.

[23] Barker E. B., Barker W. C., Burr W. E., Polk W. T., Smid M. E. Recommendation for key management, Part
1: general (revised). SP 800-57. Gaithersburg, MD, USA: National Institute of Standards and Technology
(NIST); 2007.

[24] Nie P, Vähä-Herttua J, Aura T, Gurtov A. Performance analysis of HIP diet exchange for WSN security
establishment. In: Seventh ACM symposium on QoS and security for wireless and mobile networks
(Q2SWinet). Miami, FL, USA; 2011. p. 51–56.

[25] Porambage P, Schmitt C, Kumar P, Gurtov A, Ylianttila M. PAuthKey: a pervasive authentication protocol and
key establishment scheme for wireless sensor networks in distributed IoT applications. Int J Distr Sens Netw,
New York, NY, USA, 2014;2014:1–14.

[26] Westhoff D, Girao J, Sarma A. Security solutions for wireless sensor networks. NEC J Adv Technol, vol. 1,
no. 3/2016, pp. 106–111.

[27] Weimerskirch A, Westhoff D. Zero common-knowledge authentication for pervasive networks. Selected areas
in cryptography. Lecture Notes in Computer Science (LNCS), vol. 3006. Heidelberg, Germany: Springer;
2004. p. 73–87.

[28] Winter T, Thubert P, Brandt A, Hui J, Kelsey R, Levis P, Pister K, Struik R, Vasseur JP, Alexander R. RPL:
IPv6 routing protocol for low-power and lossy networks, RFC 6550, IETF, Internet Engineering Task Force,
Fermont, CA, USA, [Online] https://tools.ietf.org/html/rfc6550; 2012.

[29] Saleh M, Al Khatib I. Throughput analysis of WEP security in ad hoc sensor networks. In: Proceedings of
the second international conference on innovations in information technology. Dubai, United Arab Emirates;
2005. p. 26–28.

[30] Hu W, Tan H, Corke P, Shih W, Jha S. Toward trusted wireless sensor networks. ACM Trans Sensor Netw,
New York, NY, USA, 2010;7(1),5:1–5:25.

http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0035
http://www.advanticsys.com/shop/mtmcm5000sma-p-23.html
http://www.advanticsys.com/shop/mtmcm5000sma-p-23.html
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0040
http://www.ietf.org/rfc/rfc7252.txt
http://tinyos.stanford.edu/tinyos-wiki/index.php/BLIP_Tutorial
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0055
https://tools.ietf.org/html/rfc6550
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0060

257REFERENCES

[31] Linn J. Privacy enhancement for Internet electronic mail: part I: message encryption and authentication
procedures, RFC 1421, IETF, Internet Engineering Task Force, Fermont, CA, USA, [Online] http://www.ietf.
org/rfc/rfc1421.txt; 1993.

[32] Wander A, Gura N, Eberle H, Gupta V, Shantz S. Energy analysis of public-key cryptography for wireless
sensor networks. In: Proceedings of the third international conference on pervasive computing and
communications. New York, NY, USA; 2005. p. 324–328.

[33] Gura N, Patel A, Wander A, Eberle H, Shantz S. Comparing elliptic curve cryptography and RSA on 8-bit
CPUs. Cryptographic hardware and embedded systems. Lecture Notes in Computer Science (LNCS), vol.
3156. Heidelberg, Germany: Springer; 2004. p. 119–132.

[34] Xiaojiang D, Hsiao-Hwa C. Security in wireless sensor networks. IEEE Wireless Commun, New York, NY,
USA, 2008;15(4):60–66.

[35] Karlof C, Wagner D. Secure routing in wireless sensor networks: attacks and countermeasures. Ad Hoc Netw,
Elsevier, Atlanta, GA, USA, 2003;1(2):293–315.

[36] Stoneburner G. Underlying technical models for information technology security, Tech. Rep. SP 800-33.
Washington, DC, USA: National Institute of Standards and Technology (NIST), Washington, DC, USA,
[Online] http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf; 2001.

[37] Balakrishnan H, Padmanabhan V, Seshan S, Katz R. A comparison of mechanisms for improving TCP
performance over wireless links. IEEE/ACM Trans Netw, New York, NY, USA, 1997;6(5):756–769.

[38] Menezes A, Van Oorschot P, Vanstone S. Handbook of applied cryptography. Boca Raton, FL, USA: CRC
Press; 2010.

[39] Diffie W, Van Oorschot P, Wiener M. Authentication and authenticated key exchanges. Design Code Cryptogr,
Springer, Heidelberg, Germany, 1992;2(No. 2):107–125.

[40] Canetti R, Krawczyk H. Analysis of key-exchange protocols and their use for building secure channels.
Advances in cryptology—EUROCRYPT. Lecture Notes in Computer Science (LNCS), vol. 2139. Heidelberg,
Germany: Springer; 2001. p. 453–474.

[41] Delfs H, Knebl H. Introduction to cryptography: principles and applications. Information security and
cryptography. Heidelberg, Germany: Springer; 2007.

[42] Bellare M, Canetti R, Krawczyk H. A modular approach to the design and analysis of authentication and key
exchange protocols (extended abstract). In: 13th annual ACM symposium on theory of computing (STOC).
Dallas, TX, USA; 1998. p. 419–428.

[43] Blake-Wilson S, Menezes A. Authenticated Diffie–Hellman key agreement protocols. Selected areas in
cryptography. London, UK: Springer; 1999. p. 339–361.

[44] LaMacchia B, Lauter K, Mityagin A. Stronger security of authenticated key exchange. Provable security.
Lecture Notes in Computer Science (LNCS), vol. 4784. Heidelberg, Germany: Springer; 2007. p. 1–16.

[45] Blake-Wilson S, Johnson D, Menezes A. Key agreement protocols and their security analysis. Cryptography and
coding. Lecture Notes in Computer Science (LNCS), vol. 1355. Heidelberg, Germany: Springer; 1997. p. 30–45.

[46] Boyd C, Mathuria A. Protocols for authentication and key establishment. Information security and
cryptography. Berlin, Heidelberg, Germany: Springer; 2010.

[47] Basin D, Cremers C, Meier S. Provably repairing the ISO/IEC 9798 standard for entity authentication.
Principles of security and trust. Lecture Notes in Computer Science (LNCS), vol. 7215. Heidelberg, Germany:
Springer; 2012. p. 129–148.

[48] Boeyen S, Howes T, Richard P. Internet X.509 public key infrastructure operational protocols—LDAPv2,
RFC 2559, IETF, Internet Engineering Task Force, Fermont, CA, USA, [Online] http://www.ietf.org/rfc/
rfc2559.txt; 1999.

[49] Badra M, Hajjeh I. Key-exchange authentication using shared secrets. IEEE Comput J 2006;39(3):58–66.
[50] Franks J, Hallam-Baker P, Hostetler J, Lawrence S, Leach P, Luotonen A, Stewart L. HTTP authentication:

basic and digest access authentication, RFC 2617, IETF, Internet Engineering Task Force, Fermont, CA,
USA, [Online] http://www.ietf.org/rfc/rfc2617.txt; 1999.

http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc1421.txt
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0070
http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0085
http://www.ietf.org/rfc/rfc2559.txt
http://www.ietf.org/rfc/rfc2559.txt
http://refhub.elsevier.com/B978-0-12-805395-9.00013-7/ref0090
http://www.ietf.org/rfc/rfc2617.txt

258 CHAPTER 13 TinyTO

[51] Preneel B. Analysis and design of cryptographic hash functions. PhD Thesis, KU Leuven, Leuven, The
Netherlands, [Online] http://homes.esat.kuleuven.be/∼preneel/phd_preneel_feb1993.pdf; 1993.

[52] Rogaway P, Shrimpton T. Cryptographic hash-function basics: definitions, implications, and separations for
preimage resistance, second preimage resistance, and collision resistance. Fast software encryption. Lecture
Notes in Computer Science (LNCS), vol. 3329. Heidelberg, Germany: Springer; 2004. p. 371–388.

[53] Noack M. Optimization of two-way authentication protocol in Internet of Things. Master thesis, University
of Zurich, Communication Systems Group, Department of Informatics, Zurich, Switzerland, [Online] https://
files.ifi.uzh.ch/CSG/staff/schmitt/Extern/Theses/Martin_Noack_MA.pdf; 2014.

[54] Texas Instruments: 2.4 GHz IEEE 802.15.4/ZigBee-ready RF transceiver, [Online] http://www.ti.com/lit/ds/
symlink/cc2420.pdf; 2016.

[55] Nguyen H. A., Forster A, Puccinelli D, Giordano S. Sensor node lifetime: an experimental study. In:
Proceedings of the 2011 IEEE international conference on pervasive computing and communications
workshops (PERCOM). New York, NY, USA; 2011. p. 202–207.

[56] Sadler C, Martonosi M. Data compression algorithms for energy-constrained devices in delay tolerant
networks. In: Proceedings of the fourth international conference on embedded networked sensor systems
(SenSys). New York, NY, USA: ACM; 2006. p. 265–278.

[57] Texas Instruments: MSP430F161x mixed signal microcontroller datasheet. http://www.ti.com/lit/ds/symlink/
msp430f1611.pdf; 2016.

[58] Polastre J, Szewczyk R, Culler D. Telos: enabling ultra-low power wireless research. In: Proceedings of
fourth international symposium on information processing in sensor networks (IPSN). Piscataway, NJ, USA:
IEEE Press; 2005. p. 364–369.

[59] FLAMINGO consortium. FLAMINGO: Management of the Future Internet, [Online] http://www.fp7-
flamingo.eu/; 2015.

[60] SmartenIT consortium. SmartenIT: Socially-aware Management of New Overlay Application Traffic
combined with Energy Efficiency in the Internet, [Online] http://www.smartenit.eu/; 2015.

http://homes.esat.kuleuven.be/~preneel/phd_preneel_feb1993.pdf
https://files.ifi.uzh.ch/CSG/staff/schmitt/Extern/Theses/Martin_Noack_MA.pdf
https://files.ifi.uzh.ch/CSG/staff/schmitt/Extern/Theses/Martin_Noack_MA.pdf
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf
http://www.fp7-flamingo.eu/
http://www.fp7-flamingo.eu/
http://www.smartenit.eu/

259

CHAPTER

OBFUSCATION AND
DIVERSIFICATION FOR
SECURING THE INTERNET
OF THINGS (IoT)

S. Hosseinzadeh, S. Hyrynsalmi, V. Leppänen
Department of Information Technology, University of Turku, Finland

14.1 INTRODUCTION
Information sharing in Internet of Things (IoT) is the element that makes the cooperation of the devices
feasible, but on the other hand, it raises concerns about the security of the collected data and the privacy
of the users. Some of the collected data contain (sensitive) personal and business information about the
users. Therefore, it is highly significant to appropriately protect this data while it is stored and transmitted.

Nonetheless, the IoT service providers principally are tackling the availability and interoperability
of the IoT services, so the security of the devices and services has never been the main focus. A report
by [1] claims that nearly 70% of the devices participating in IoT are vulnerable to security exploits,
which make the network prone to security attacks. Therefore, there should be effective techniques to
protect these devices and the shared information over the network, in order to ensure the liability of the
system in addition to the availability of it.

Due to the fact that IoT is based on the Internet, it is subject to the traditional security threats exist-
ing for the Internet. The dynamic nature of the IoT environment, along with the heterogeneity and large
scale of devices, make the traditional security issues more critical and also present new security chal-
lenges. Additionally, devices in IoT are exceedingly constrained in capacity and computational power.
Hence, the security measure considered is required to be lightweight, to be tolerable by the devices, and
to be compatible with the limitations of the participating nodes in IoT.

To the best of our knowledge, there is no research existing that studies the security of IoT through
the potential techniques of obfuscation and diversification. In this chapter, we propose two novel ap-
proaches to address the security threats in IoT based on these two promising techniques. Obfuscation
and diversification have been successful in mitigating the risk of malware in various domains [2]. We
propose: (1) applying the two techniques, obfuscation and diversification, for protecting the operating
systems and APIs of the IoT devices, and (2) applying the two techniques on the communication pro-
tocols among the devices.

This chapter is structured as follows: Section 14.2 discusses the characteristics and security chal-
lenges in IoT. Considering the fact that our proposal focuses on securing the operating systems related
to the sensors and devices participating in the IoT and their access protocols, we study different types of
operating systems (in Section 14.2.1) and the access protocols (in Section 14.2.2), designed and used in

14

260 CHAPTER 14 OBFUSCATION AND DIVERSIFICATION

IoT. We continue by discussing the security challenges in IoT that need to be tackled. In Section 14.3,
we introduce the terms and techniques, obfuscation and diversification, that our proposed ideas are
based on. We discuss how these techniques have been used to protect operating systems and software
in other environments. In Section 14.4, we present our proposed techniques in detail, our motivations
behind our ideas, the limitations, and the possible drawbacks of the proposed techniques. Section 14.5
considers applying IoT-related software diversification in different use-case scenarios from the view-
point of various stakeholders and discusses the validity considerations. Finally, “Conclusions and Fu-
ture Work” come in Section 14.6.

14.2 DISTINGUISHING CHARACTERISTICS OF IoT
14.2.1 OPERATING SYSTEMS AND SOFTWARE IN IoT
IoT is made up of a wide variety of heterogeneous components, including sensors, devices, and ac-
tuators. Some of these components are supplied by more powerful 32-bit processors (eg, PCs and
smartphones), whereas some others are equipped with only lightweight 8-bit micro-controllers [2].
On that account, the chosen software should be compatible with all ranges of devices, including the
low-powered ones. Moreover, the software should not only be able to support the functionality of the
devices, but also should be compatible with the limitation of the participating nodes of this network,
in terms of computational power, memory, and energy capacity [3]. Baccelli et al. [2] discuss that the
following items are the generic prerequisites of software running on IoT devices:

• Heterogeneous hardware constraints: The chosen software for IoT should require a fairly low
amount of memory, and operate with low complexity, so that the IoT devices with limited
memory and computational power would be able to support the operations. Additionally, due
to the variety of the hardware in IoT, the software should be able to support a wide range of
hardware platforms, including the constrained ones.

• Programmability: From the development point of view, the chosen software should provide a
standard application-program interface (API), and should also support the standard programming
languages. For example, the operating system should make C and C++ available, as high-level
languages, for the application developers.

• Autonomy: For energy efficiency means, (1) the software should allow sleep cycles for saving
energy when the hardware is in the idle mode; (2) the network stack should be adaptive to the
constrained characteristic of the devices in IoT, and also should allow the protocols to be replaced
at each layer; and (3) the chosen software should be sufficiently robust and reliable.

These factors motivated the developers to construct generic software and operating systems that are
compatible with all ranges of devices in IoT that have diverse capacities and capabilities. This means
that the software, on one hand, is capable of leveraging the capabilities of the more powerful devices,
and, on the other hand, can run on the power-restricted devices. Table 14.1 lists some of the embedded
operating systems that are designed to meet the requirements of the heterogeneous constrained nodes
(sensors and devices) in this network [4].

Among all, Contiki [6] and TinyOS [7] are the most commonly used operating systems for IoT
devices [5]. Contiki [8] is an open-source operating system developed in C programming language and
designed to operate on low-power memory-restricted devices. Contiki is considered to be a lightweight

26114.2 DISTINGUISHING CHARACTERISTICS OF IoT

operating system and reasonably memory efficient, requiring only a few kilobytes of memory [8]. By
supporting various networking standards, such as IPV4, IPV6, and CoAP, it connects the low-power
microcontrollers to the Internet. For energy efficiency means, it has a set of mechanisms that enables
the system to run in a lower-power mode, which consumes less power but is still able to send and re-
ceive messages. For memory-efficiency purposes its design is based on a protothreads model, which
is a combination of a multithreading and event-driven approach. Protothreads provide blocking event-
handlers. Therefore, this demonstrates that multithreading does not always have to be on the kernel’s
lowest levels, but can be at the application library on top of the event-driven kernel. Moreover, Contiki
has a dynamic nature, that is, it allows the dynamic loading and unloading of applications at runtime.

TinyOS [7] is an open-source operating system developed in nesC [9], which is an extension of the
C language. Similar to Contiki, TinyOS is multithreading and event-driven, and it is designed according
to a component-based programming model and monolithic structure. TinyOS is specifically designed
for the devices distributed in the sensor networks with limited resources, for example, 512 bytes of
RAM and 8 Kbytes of program memory.

14.2.2 IoT NETWORK STACK AND ACCESS PROTOCOLS
IoT is built up of a large number of objects, including sensors, devices, and applications, connected to
one another. There are three different types of links for connecting these objects to each other [5,10]:

Table 14.1 Operating Systems for Embedded Systems

Operating
System Overview Characteristics Language

Open
Source

Contiki An open-source multitasking OS
designed for wireless sensor network
(WSN) and memory-efficient embedded
systems network.

Modular structure,
multithreading, event-driven.

C ✓

TinyOS An open-source OS, intended for the
low-power wireless devices

Monolithic structure,
multithreading, event-driven,
support for TOS threads.

NesC ✓

RIOT OS Real time Modular structure, multithreading C and C++ ✓

Mantis An open-source operating system
designed for WSN. It presents C API
with Linux and Windows development
environments.

Threads C ✓

Nano-RK This OS has a lightweight embedded
resource kernel (RK) and networking
support to be used in WSN.

Threads C ✗

LiteOS An open-source UNIX-like OS for WSN Threads and events LiteC++ ✓

FreeRTOS A real-time OS designed for embedded
devices

C ✗

Linux Monolithic structure, event-driven C and C++ ✓

262 CHAPTER 14 OBFUSCATION AND DIVERSIFICATION

(1) device-to-device (D2D), which is the connection between the devices; (2) device-to-server (D2S),
which is the connection between the devices and the servers, and (3) server-to-server (S2S), which is
the connection between different servers to share collected data (see Fig. 14.1). For making the connec-
tions feasible, various communication protocols are employed.

Considering the TCP/IP as the de facto standard for the communication networks, some are in the
opinion that it could be used also for IoT in the future, to provide flexible IP based architecture. Cur-
rently, the low capacity of the resource-constrained devices makes it challenging to deploy IPv6 in IoT
and in Low power and Lossy Networks (LLNs). LLNs are types of networks in which both routers and
nodes are constrained in terms of memory, energy, and processing power. These networks are charac-
terized as being unstable, having a high rate of loss, and having a low data-rate [11]. On that account,
the Internet Engineering Task Force (IETF) has presented protocols adaptable to this environment, such
as Constrained Application Protocol (CoAP) [12] and IPv6 Routing Protocol for Low power and Lossy

FIGURE 14.1 Communication Links

There are three different types of communication links among the different components of IoT. (A) D2D, device to
device; (B) D2S, device to server; (C) S2S, server to server.

Adapted from Ref. [12].

26314.2 DISTINGUISHING CHARACTERISTICS OF IoT

Networks (RPL) [11]. With the help of these standard protocols, the normal IP-based devices (eg, PCs
and smartphones) can connect to the sensor devices [13]. The developed protocols are designed in
accordance with the requirements and characteristics of IoT. Users select the proper set of protocols
based on the requirements of their applications. Due to the fact that components in IoT utilize various
protocols to communicate to the network (eg, CoAP, MQTT, DDS, XMPP), to enable them to com-
municate to each other the protocols need to be translated to a standard protocol through XML, JSON,
or RESTful APIs. These standard protocols support the scalability, interoperability, and the low power
and lossy behavior of the nodes in IoT. The scalability deals with the issues of adding an extra node
to the network, and interoperability ensures that the devices in IoT are able to communicate with each
other [14].

Fig. 14.2 depicts the network stack that is currently used in IoT, with some examples of the com-
munication protocols at each layer.

The following are the most commonly used protocols:

• CoAP [12] is an application-layer protocol that is built on UDP and is used in resource-
constrained nodes. As HTTP is fairly complex for the LLNs, CoAP is proposed as a web-transfer
protocol, which is simply translated to HTTP and simplifies the integration with the Web. Due to
the fact that CoAP is designed over UDP and not TCP, the common SSL/TLS cannot be used for
providing security. For this purpose, Datagram Transport Layer Security (DTLS) is available to
provide the same services as TLS.

• User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) are the protocols that
are used on the Internet. TCP has proven to be quite complex for the LLNs. Thus, UDP is the
most common protocol used at this layer for the LLNs [4].

• On the traditional Internet IP diagram, IPv4 and IPv6 are used for controlling the messaging at
the network layer. In IoT architecture, in order to allow IPv6 packets to be transmitted over IEEE
802.15.4-based networks, 6LoWPAN [15] comes as an adaptation layer between the link layer
and the network layer. It presents packet fragmentation and header compression to decrease the
datagram size [4].

• RPL is a routing protocol standardized for the LLNs. It supports the traffic flow between the
devices of a network (point-to-point), the devices and a central node (multipoint-to-point), and the
central node with devices (point-to-multipoint) [11].

• The MAC/PHY layers that had been traditionally used on the Internet (eg, WiFi and Ethernet)
typically had high bandwidth and required high power, which made them incompatible for IoT.

FIGURE 14.2 IoT Network Stack and Some of the Communication Protocols Used at Each Layer

264 CHAPTER 14 OBFUSCATION AND DIVERSIFICATION

IEEE 802.15.4 is the standard that is mainly used for IoT to specify the MAC layer and the
physical layer. It has lower bandwidth that supports smaller packet size [16].

• Message Queue Telemetry Transport (MQTT) [17] is a publish/subscribe messaging protocol for
communicating the collected data from the devices to the servers (D2S). MQTT is considered to
be a many-to-many protocol that passes the messages from one client to another through a central
broker. MQTT is designed on top of the TCP/IP, so the connection could be encrypted with SSL/
TLS.

• Extensible Messaging and Presence Protocol (XMPP) [18] is a protocol to connect the devices
and their users to the server (D2S). It is based on XML (Extensible Markup Language) and
provides services for instant messaging and presence functionality.

• Data Distribution Service (DDS) [19] is a fast bus for connecting the publisher to the subscriber
(D2D) in real-time systems. It is known as interoperable, dependable, scalable, and having high
performance.

• Advanced Message Queuing Protocol (AMQP) [20] is an application-layer protocol with features
of flexible routing and a queuing system for connecting one server to another (S2S). It can reuse
the underlying transport models, such as TCP/IP and UDP [21].

In the following, we will discuss the security and privacy aspects of IoT devices and networks.

14.2.3 SECURITY AND PRIVACY IN IoT
Considering the fact that IoT is founded on the Internet, it is susceptible to the traditional security at-
tacks threatening the Internet. Furthermore, the key characteristics of IoT not only make the traditional
security challenges more severe, but they also introduce new challenges. The characteristics are [22]:

• Heterogeneity: IoT embraces a diverse set of devices with different capabilities that communicate
with each other. An extremely constrained device should open up a secure communication
channel with a more powerful device, for example, a smartphone. Therefore, the security
mechanism used (such as a cryptography approach or key management scheme) needs to be
compatible with both communicating parties.

• Low capacity: The devices in IoT are fairly limited in terms of computational power, memory,
and battery capacity, which make them unable to handle complex security schemes.

• Scale: The number of participating nodes in IoT is exceedingly growing, which makes it harder to
control the collected data.

• Wireless connection: Devices connect to the Internet through various wireless links (eg, ZigBee,
Bluetooth). The wireless connection increases the chance of eavesdropping. Thus, the links need
to be secured so that the intruders cannot intercept the communication.

• Embedded use: most of the IoT devices are designed for a single purpose with different
communication patterns. This makes it quite challenging to find a security scheme compatible
with these varied patterns.

• Mobility: The devices in IoT are mobile and are connected to the Internet through various
providers.

The aforementioned properties make IoT more prone to the security threats compared to the Inter-
net and traditional sensor networks. The following are the security challenges in IoT that need to be
tackled [23]:

26514.3 OBFUSCATION AND DIVERSIFICATION TECHNIQUES

The tiny sensors and devices of IoT are typically unable to handle the traditional authentication
and authorization techniques. Furthermore, the existing authentication mechanisms proposed previ-
ously for the sensor networks assume that sensors are part of a network that connect to the Internet
through a central gateway; however, the idea in IoT is that the nodes connect to the Internet directly.
This makes the authentication more challenging, as the nodes need to be authenticated individually.
Communication security is an important factor in any communication network to ensure the integrity
of the transmitted data and to guarantee that the data will not fall into the wrong hands. Cryptography
is a successful technique always used for securing the communication; however, typical cryptographic
algorithms take up a high amount of computational power and bandwidth.

The programming bugs caused by the developers at the development stage cause software vulner-
abilities. Software vulnerabilities, if exposed, can result in security attacks. Program analysis is a way
of discovering these vulnerabilities before the software is released, which, however, requires comput-
ing power that is not compliant with the constraints of the IoT. Malware (malicious software) is a set of
instructions injected in the user’s computer to manipulate the system maliciously toward the attacker’s
desires [24]. The connectivity of the devices in IoT makes it easier for the attackers to widely propa-
gate the malware over the network. The first malware instance against IoT was reported by Symantec
in November 2013, which indicated the significance of having solutions to address this security issue.
To the best of our knowledge, there has not been much research work on the malware targeting IoT.

Privacy is another issue in IoT to be addressed. Because of the increase in the use of IoT in people’s
daily lives, more and more (personal) data is collected. Additionally, IoT captures the behavioral pat-
tern of the daily actions that a user takes, in order to provide customized services based on the user’s
preferences. Hence, it is highly significant to protect all of this information, while it is either stored or
transmitted over the network, in order to maintain the privacy of the user. Nonetheless, the existing
privacy-preserving approaches, such as data anonymity and location privacy, require high-powered
equipment and higher bandwidth that are not always adaptable to the IoT network [25].

14.3 OBFUSCATION AND DIVERSIFICATION TECHNIQUES
Code obfuscation [26] is to transform the program’s code into another version, which is syntactically
different but semantically the same. That is, the program still produces the same output although its
implementation differs from the original one. The purpose of this transformation is to make the code
more complex and difficult to understand, in order to make the malicious reverse-engineering of the
code harder and costlier for the attacker.

Fig. 14.3 illustrates a piece of obfuscated code, which is scrambled in a way so that the purpose
of the code is not easy to understand. Certainly, with given time and resources, the attacker may suc-
ceed in comprehending and breaking the obfuscated code; however, it requires more time and energy
compared to breaking the original version. There have been several different obfuscation mechanisms
proposed [27]. Each of these mechanisms applies the obfuscation transformations at various parts of
the code, and also at various phases of the program development. For instance, obfuscation through
opaque predicates [27] is a technique used to alter the control flow of the program. Opaque predicates
are Boolean expressions that are always executed in the same way, and the outcome is always known
for the obfuscator, but not for the attacker in priori. Evaluating these Boolean expressions at runtime
makes the analysis of the code harder.

266 CHAPTER 14 OBFUSCATION AND DIVERSIFICATION

Diversification aims to make diverse unique instances of a program that are syntactically different
but functionally equivalent. This idea was pioneered by [28] in 1993, to protect the operating systems
through generating diversified versions of them [29–36]. Following that, there has been a large body
of research on obfuscating and diversifying the program interfaces, and on applications to protect them
against the malicious software.

Currently, the software and operating systems are developed and distributed in a monocultural
manner. Their identical design makes them suffer from the same types of vulnerabilities, and they are
prone to the same security attacks. An intruder, by exploiting these vulnerabilities, can simply under-
take a vast number of systems. Diversification, by introducing multiculturalism to the software design,
aims at impeding the risk of massive-scale attacks. The way that a program is diversified is unique,
and it is kept secret. Assuming that the attacker discovers the diversification secret of one instance
of the program, it can possibly attack against that specific version, whereas the others would still be
safe. That is to say, a single-attack model does not work on several systems, and the attacker needs to
design system-specific attack models. For this reason, diversification is considered to be a promising
technique to defend against massive-scale attacks and protect the largely distributed systems. Fig. 14.4
shows the distribution of the uniquely diversified replicas of Program P among its users. The attacker,
by designing an attack model, can only undertake one replica, and the other replicas are safe.

Program bugs caused by the developers at the time of development are unavoidable and lead to
software vulnerabilities. In theory, the injected malware uses the knowledge it has picked up from
the system’s vulnerabilities to run its code. Diversification of the internal system interfaces makes it
difficult for the malware to gain knowledge about the vulnerabilities of the system and exploit those
vulnerabilities to perform an attack, as code-injection attacks are based on using some knowledge of
the internal implementation details. Moreover, after diversification, because the malware does not have
enough knowledge about the interfaces, it is harder for it to call them and execute its malicious code.
Thus, eventually, the malware becomes ineffective. The general idea in code obfuscation and program
diversification is not to remove the vulnerabilities of the software, but to elude the attacker from taking
advantage of them. Some of these vulnerabilities are not even known at the time of the software release.
These techniques help with preventing the zero-day type of attacks that take advantage of the unknown
vulnerabilities.

FIGURE 14.3

(A) Original version of a piece of JavaScript code, and (B) obfuscated version of the same code.

26714.4 ENHANCING THE SECURITY IN IoT

14.4 ENHANCING THE SECURITY IN IoT USING OBFUSCATION
AND DIVERSIFICATION TECHNIQUES
The majority of the security threats in IoT base their exploits on the vulnerabilities that exist at the
application layer and the network layer. As we discussed earlier, the vulnerabilities caused at the de-
velopment phase of the applications and software are unavoidable, and some of them remain unknown
until an attack occurs (ie, zero-day attacks). Therefore, there should be security measures considered
to prevent intruders from taking advantage of these vulnerabilities. To this end, we propose two novel
techniques that make it difficult for an attacker to exploit the system’s vulnerabilities to conduct a suc-
cessful attack. We propose (1) obfuscating/diversifying the operating systems and APIs used in the IoT
devices, and (2) obfuscating/diversifying some of the access protocols among nodes of this network.
The earlier approach secures the IoT at the application layer, whereas the later introduces security at
the network layer.

The sensors and devices participating in IoT function with the help of the operating systems and
software on them, and, like any other software system, they have vulnerabilities that make them prone
to security attacks. An intruder seeks to exploit existing vulnerabilities on the system by finding his or
her entry to the system. For instance, a piece of malware can capitalize on these vulnerabilities to inject
its malicious code to spy on or manipulate the targeted system. In our proposed approach, we do not
aim at removing these vulnerabilities, but we aim at preventing or making it difficult for the attacker to
learn about these vulnerabilities and to utilize them. We achieve this goal by applying obfuscation and
diversification techniques on the operating systems and APIs of the devices in IoT. Obfuscation of the
operating systems and APIs make them complicated to comprehend, thus an attacker needs to spend
more time and effort to understand the program in order to design an attack model. Diversification of
the operating systems and APIs used on the devices improve the security of the devices by creating
a unique internal structure for them. This implies that even if an attacker finds out the diversification
secret for the software of one of the devices, it can undertake only that specific device, and other de-
vices are safe. This is because their operating systems and APIs are diversified with a different diver-
sification secret, that is, although devices might have similar software with similar functionality, their
interfaces are uniquely diversified and the attacker needs to design various attack models for each of

FIGURE 14.4 Diversification Generates and Distributes Unique Replicas of a Program

Thus, if an attacker manages to attack one copy of the software, the other copies are safe.

268 CHAPTER 14 OBFUSCATION AND DIVERSIFICATION

these systems. In our previous work [37–46], through obfuscating the operating systems (eg, Linux)
and diversifying the APIs, we successfully made it harder for the malware to interact with the interfaces
and access the resources. We believe that the same approaches are effective in IoT to protect the operat-
ing systems and APIs of the devices. Obfuscation makes it difficult for the malware to gain knowledge
about the environment, and thus cannot interact with the resources. Diversification makes the software
of the devices unique, thus thwarting the massive-scale attacks.

The second part of our idea is to apply obfuscation and diversification on the access protocol
of the communication links among the nodes of the network. The application level protocol of a
network identifies the interfaces and the shared protocols that the communicating nodes use in the
network. Protocol identification refers to identifying the protocol used in a communication session
by the communicating parties [47]. Static analysis could be used to capture the protocol used in the
communication and compare it to the common existing protocols. The knowledge gained about the
protocol used can be misused by an intruder to break into the communication, to eavesdrop, or to
manipulate the data being sent over the network. Our idea is to make it hard for an attacker to gain
this knowledge and identify the protocol used. We propose to obfuscate the protocols, in order to
make the protocol unintelligible and difficult to identify. Protocol obfuscation removes/scrambles
the characteristics that make the protocol identifiable, such as byte sequence and packet size (eg,
by making them look random). Cryptography is a common way to obfuscate the protocol. Upon
the security need and the capacity of the network, different levels of encryption could be employed
[47]. For instance, in Plain mode, only the headers are encrypted and the payload is transmitted
unencrypted, whereas in RC4, stronger cryptography is applied, for which a more powerful attack
model is required to break. Certainly, RC4 is a stronger approach than Plain, but consumes more
CPU time.

We propose to obfuscate the communication protocol of a subset of nodes (eg, communicating
devices in a home). The way in which the obfuscated protocol is kept is a secret among these nodes, in
a manner that the nodes need to know the obfuscation secret, in order to be able to communicate with
each other. Changing/complicating the form of the protocol makes it dissimilar from the typical format.
With the help of obfuscation, we aim at generating a large number of unique, diversified protocols that
function the same as, but look different from, the reference protocol. We have already applied this to
the SQL query protocol in [48].

14.4.1 MOTIVATIONS AND LIMITATIONS OF THE PROPOSED IDEAS
The techniques, obfuscation and diversification, have been shown to bring a high level of security in
various domains. This motivated us to propose the use of these techniques in an IoT environment to
boost the security of the participating nodes of this network and also the communication links among
them. We believe our approaches are fairly successful in impeding the risk of malicious reverse-engi-
neering, unknown zero-day attacks, targeted attacks, and massive-scale types of attacks. In the follow-
ing, we consider the advantages of the proposed ideas, and we will continue with the limitations and
drawbacks that these approaches may bring along.

• Additional security at the device level: The existing security measures in IoT mainly focus
on securing the network. The proposed ideas present security at the device level, which is an
orthogonal proactive security measure. In this manner, even if the malware makes its way to one
node, it is stopped at that point and has no way to propagate to the whole network. This is because,

269

in order to communicate with the other nodes, it has to know the obfuscation method, which is
secret. Therefore, the malware that is unable to talk to the other nodes becomes ineffective.

• Energy efficiency: The sensors and devices in IoT are quite resource-constrained, meaning
that they are extremely limited with regard to computational power, memory, and energy
capacity. The considered security measure is required to be lightweight and compatible with
these limitations. For this reason, the strong cryptography mechanisms and the anti-virus
programs cannot be used on these devices, due to their high complexity, energy consumption,
and the impact on performance. API diversification will not have any substantial execution
overhead, whereas protocol diversification and also obfuscation may slow down the execution
to some extent.

• No complexity for the manufacturer: The sensors and devices in IoT contain tiny chips embedded
in them, which are intolerant to a complex design. Our proposed security techniques do not
introduce any additional complexity to the manufacturing process.

• Mitigates the risk of malware: the participating devices in IoT function with the help of
lightweight operating systems on them. In order to handle the operations, the operating systems
execute codes. Similar to any other software, code execution is a potential attack surface for
malicious software to access the code, read, or modify it as the attacker desires. To this end, the
operating systems of the devices should be protected from the malicious software. We believe
that obfuscation and diversification of the operating systems are effective techniques to render the
malware ineffective to interact with the environment and execute its code. To make our approach
compatible with the limitations of the devices, we employ the less complicated obfuscation and
diversification mechanisms, such as identifier renaming.

• Mitigates the risk of massive-scale attacks: The sensors, actuators, and devices are designed,
manufactured, and distributed identically in “monoculture” manner. This means that they are
produced with similar layout, and therefore, with similar security vulnerabilities. Thus, an
attacker, by getting knowledge about the vulnerabilities of a component, and then designing
an attack model, can simply invade a large number of devices. We believe that diversification
presents a “multicultural” behavior in software deployment, and is a potent security mechanism
for a largely distributed environment such as IoT.

• Amend the update limitation in embedded devices: Typically, the software on the embedded
devices cannot be updated or receive the security patches. We believe that obfuscation and
diversification techniques can protect these devices so as to be prepare them for the zero-day
type of attacks, because the basic idea of these two techniques does not try to remove the
vulnerabilities and security holes of the software, but it avoids (or makes it hard for) an attacker
to take advantage of them.

In spite of the security advances that our proposed approach presents to the system, it has
some limitations and also brings along some costs. Code obfuscation protects the code through
scrambling and complicating it, which causes costs in terms of code-size increase and execution
overhead, thus affecting the performance of the system to some extent. Protocol obfuscation is
done by changing/complicating the form of the protocol and making it different from the default
format (for instance, by changing the datatypes, states, and number of message exchanges). There-
fore, when obfuscating the communication protocol, it is required that the communicating parties
are capable of supporting the obfuscated protocol, that is, that they know the obfuscation secret
and how the protocol is obfuscated. Diversification of the applications makes the development and

14.4 ENHANCING THE SECURITY IN IoT

270 CHAPTER 14 OBFUSCATION AND DIVERSIFICATION

distribution of the software more challenging. At the deployment phase, there comes an additional
phase to diversify the software to make unique versions. Also, at the distribution level, managing
the update patches might be a challenge [49].

Considering these challenges, limitations, and costs, depending on the need of the system, different
levels of obfuscation and diversification could be applied to achieve the security. The more obfusca-
tion/diversification is applied, the higher security and for sure the more overhead we will attain. There
is always a trade-off between the level of security and performance. Taking the low capacity of the
IoT devices into account, lightweight obfuscation/diversification mechanisms are the most suitable to
apply, such as renaming the identifiers of callable entities in APIs and propagating the changes to legal
applications of IoT devices.

14.5 DIFFERENT USE-CASE SCENARIOS ON SOFTWARE
DIVERSIFICATION AND OBFUSCATION
In the following, we will discuss two use-case scenarios in which program diversification and code
obfuscation are applied together with protocol obfuscation. The first use-case scenario describes a se-
curity sensor network used to monitor public spaces. The second use-case illustrates a medical sensor
network used to observe patients.

Most of our modern cities are already overlooked by a legion of sensors. Nowadays most of these
are digital video recorder (DVR) cameras mounted in the walls to monitor public streets and parks.
Nevertheless, in the future, it is likely that a wide range of sensors will be used to observe and adjust
cities. For example, air- and water-quality sensors can be installed into the population centers. Simi-
larly, it is likely that traffic and transportation will be monitored closely in the future. In public areas,
some sensors could be used for environmental monitoring, and some others could be used for detecting
explosives [50].

A public monitoring system is a tempting target for a hacker. Whereas hacking a public security-
sensor network would be an easy way to achieve great publicity, it is also a strategically important
objective for cyberterrorists as well as criminals. One recent example of a security breach in these
cameras was announced recently. The security cameras were hijacked and used to mine bitcoins [51].
Thus, it is highly significant to protect these kinds of surveillance-device networks.

As with all IoT devices, the security-surveillance-device networks are prone to attacks due to their
limited hardware and computational capabilities. Hence, there is a great need for security measures
that are tolerable by these constraint devices. Diversification of the operating systems of the devices is
an achievable way to break device monoculturalism. With this, for example, the previously described
bitcoin-mining attack could have been easily avoided: although the attackers would still have been able
to capture a single device, they would not have been able to paralyze the whole network. Furthermore,
if the program code and interfaces of sensor devices are obfuscated, then creating an attack against
those devices would be an arduous task.

Another interesting possibility enabled by IoT technologies is remote health-monitoring. The
technology offers a wide range of different vital signs that can be monitored. For example, blood
pressure, heart rate, blood glucose level, and other signs can be remotely observed. These kinds of
systems could, for example, send a notification in case of an emergency or collect information to a

27114.6 CONCLUSIONS AND FUTURE WORK

database for later use. In countries where the average age of citizens has been constantly growing, the
remote health-monitoring would be able to bring efficiency and cost savings to the healthcare districts
and societies.

In the domain of healthcare, privacy and security are crucial. In remote health monitoring, secur-
ing the confidentiality of information is an important aspect. Although diversification and obfuscation
help to protect the monitors against large-scale attacks, securing the privacy of the communication
between the end-points is still an open question. In our use case, we propose utilizing the protocol
obfuscation in addition to other techniques to secure the communication. The protocol obfuscation
makes the communication between end-points more arbitrary and harder to break than using only, for
example, cryptography.

There are, however, certain open problems that need to be addressed when utilizing diversification
in IoT networks. First, what must be resolved is how the controlling unit knows and stores the way
that each monitor is diversified, and how it should be contacted. Second, although the program code
diversification adds only a little, if any, performance penalty, it is currently not known as to what these
penalties might be, which are caused by the protocol obfuscation.

14.6 CONCLUSIONS AND FUTURE WORK
In this chapter, we discussed that the use of IoT is considerably growing in both the personal and busi-
ness lives of people, in a way that the connected devices are outnumbering the population of the world.
All of these physical objects work together by collecting information about the people and the envi-
ronment, and sharing these data. Therefore, it is highly significant to protect these data while they are
being transmitted and stored. However, the specific characteristics of IoT compared to the traditional
networks makes the security in IoT more challenging. These characteristics are: the large scale, the het-
erogeneity, and the low capacity of the devices in IoT. There is a huge number of devices and sensors
in IoT that capture large amounts of data. The security mechanism needs to ensure the integrity of these
data throughout the whole network. The physical objects in IoT are fairly heterogeneous, that is, they
connect to the network through various means and have different capacities. Therefore, the security
mechanism under consideration should be compatible with all of these objects. Furthermore, the sen-
sors and devices are extremely limited in resources, for example, memory, battery, and computational
power. Thus, the security mechanism should be supported by an entire range of devices, including the
least powerful ones.

In this chapter, we proposed two novel approaches for securing IoT at the application and net-
work layer, using two potential techniques: obfuscation and diversification. The proposed ideas were:
(1) applying obfuscation and diversification techniques to the software, operating systems, and APIs of
the devices in IoT, and (2) applying obfuscation and diversification techniques to the communication
protocols among a set of devices. We believe this approach is compatible with the limitations of the
participating nodes in IoT.

For our future work, we will focus on implementing the proposed ideas, by obfuscating and diversifying
the operating systems that are dominantly used in IoT (eg, Contiki) and in the application layer protocols (eg,
CoAP). Nevertheless, the methods discussed in this chapter may already be taken into use by the IoT device
manufacturers, and thus harden their device networks against malicious attackers.

272 CHAPTER 14 OBFUSCATION AND DIVERSIFICATION

REFERENCES
 [1] Internet of Things research study—HP report, http://www8.hp.com/h20195/v2/getpdf.aspx/4aa5-4759enw.

pdf/; 2015.
 [2] Larsen P, Homescu A, Brunthaler S, Franz M. Sok: automated software diversity. In: 2014 IEEE Symposium

on Security and privacy (SP); 2014. p. 276–291.
 [3] Baccelli E, Hahm O, Gunes M, Wahlisch M, Schmidt TC. Operating systems for the IoT—goals, challenges,

and solutions. Workshop Interdisciplinaire sur la Sécurité Globale (WISG2013). France: Troyes; 2013.
 [4] Baccelli E, Hahm O, Gunes M, Wahlisch M, Schmidt T. RIOT OS: towards an OS for the Internet of Things.

In: Conference on computer communications workshops (INFOCOM WKSHPS), IEEE; 2013. p. 79–80.
 [5] Postscapes, tacking the Internet of Things, http://postscapes.com/; 2015.
 [6] Dunkels A, Gronvall B, Voigt T. Contiki—a lightweight and flexible operating system for tiny networked

sensors. In: Twenty ninth annual international conference on local computer networks, IEEE; 2004. p. 455–62.
 [7] Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo A, Gay D, Hill J, Welsh M, Brewer E, Culler

D. TinyOS: an operating system for sensor networks. In: Weber W, Rabaey JM, Aarts E, editors. Ambient
intelligence. Berlin Heidelberg: Springer; 2005. p. 115–48.

 [8] Contiki: The open source OS for the Internet of Things, http://www.contiki-os.org/; 2015.
 [9] nesC: a programming language for deeply networked systems, http://nescc.sourceforge.net/; 2015.
[10] Electronic design, http://electronicdesign.com/; 2015.
[11] RPL: IPv6 routing protocol for Low-power and Lossy Networks (RPL), https://tools.ietf.org/html/rfc6550/;

2015.
[12] Shelby Z, Hartke K, Bormann C. The Constrained Application Protocol (CoAP), RFC 7252; 2014.
[13] Sheng Z, Yang S, Yu Y, Vasilakos A, McCann J, Leung K. A survey on the IETF protocol suite for the Internet

of Things: standards, challenges, and opportunities. IEEE Wireless Commun 2013;20(6):91–8.
[14] Embedded computing design, http://embedded-computing.com/; 2015.
[15] IPv6 over low power WPAN (6LowPAN), https://tools.ietf.org/wg/6lowpan/; 2015.
[16] IEEE 802.15: wireless personal area networks (PANs), http://standards.ieee.org/about/get/802/802.15.html/;

2015.
[17] Hunkeler U, Truong HL, Stanford-Clark. MQTT-S—a publish/subscribe protocol for wireless sensor

networks. In: Third International conference on communication systems software and middleware and
workshops, COMSWARE; 2008. p. 791–798.

[18] Extensible messaging and presence protocol (XMPP), http://tools.ietf.org/html/rfc6121/; 2015.
[19] Pardo-Castellote G. Omg data-distribution servitd: architectural overview. In: Proceedings of the 23rd

international conference on distributed computing systems workshops; 2003. p. 200–206.
[20] Vinoski S. Advanced message queuing protocol. IEEE Internet Comput 2006;10(6):87–9.
[21] O’Hara J. Toward a commodity enterprise middleware. Queue 2007;5(4):48–55.
[22] Babar S, Mahalle P, Stango A, Prasad N, Prasad R. Proposed security model and threat taxonomy for the

Internet of Things (IoT). In: Meghanathan N, Boumerdassi S, Chaki N, Nagamalai D, editors. Recent trends
in network security and applications of communications in computer and information science, 89. Berlin,
Heidelberg: Springer; 2010. p. 420–9.

[23] Zhang ZK, Cho MCY, Wang CW, Cheng CK, Hsu CW, Shieh S. IoT security: ongoing challenges and
research opportunities. In: 2014 IEEE seventh international conference on service-oriented computing and
applications (SOCA); 2014. p. 230–234.

[24] Skoudis E, Zeltser L. Malware: fighting malicious code. New Jersey, NJ: Prentice Hall Professional: 2004.
[25] Bandyopadhyay D, Sen J. Internet of things: applications and challenges in technology and standardization.

Wireless Personal Commun 2011;58(1):49–69.
[26] Collberg C, Thomborson C, Low D. A taxonomy of obfuscating transformations. Technical report, Department

of Computer Science, The University of Auckland, New Zealand; 1997.

http://www8.hp.com/h20195/v2/getpdf.aspx/4aa5-4759enw.pdf
http://www8.hp.com/h20195/v2/getpdf.aspx/4aa5-4759enw.pdf
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0010
http://postscapes.com/
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0015
http://www.contiki-os.org/
http://nescc.sourceforge.net/
http://electronicdesign.com/
https://tools.ietf.org/html/rfc6550/
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0020
http://embedded-computing.com/
https://tools.ietf.org/wg/6lowpan/
http://standards.ieee.org/about/get/802/802.15.html
http://tools.ietf.org/html/rfc6121/
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0045

273REFERENCES

[27] Collberg C, Thomborson C, Low D. Manufacturing cheap, resilient, and stealthy opaque constructs. In:
Proceedings of the 25th ACM SIGPLANSIGACT symposium on principles of programming languages.
POPL ‘98. ACM, New York, NY, USA; 1998. p. 184–196.

[28] Cohen FB. Operating system protection through program evolution. Comput Secur 1993;12(6):565–84.
[29] Anckaert B, De Sutter B, De Bosschere K. Software piracy prevention through diversity. In: Proceedings

of the 4th ACM workshop on digital rights management. DRM 2004. ACM, New York, NY, USA; 2004.
p. 63–71

[30] Franz M. E unibus pluram: massive-scale software diversity as a defense mechanism. In: Proceedings of the
workshop on new security paradigms, NSPW ’10. ACM, New York, NY, USA; 2010. p. 7–16.

[31] Homescu A, Neisius S, Larsen P, Brunthaler S, Franz M. Profile-guided automated software diversity. In:
IEEE/ACM international symposium on code generation and optimization (CGO); 2013.

[32] Larsen P, Brunthaler S, Franz M. Security through diversity: are we there yet? IEEE Secur Privacy
2014;12(2):28–35.

[33] Low D. Protecting Java code via code obfuscation. Crossroads 1998;4(3):21–3.
[34] Majumdar A, Thomborson C. On the use of opaque predicates in mobile agent code obfuscation. In: Kantor P,

Muresan G, Roberts F, Zeng DD, Wang F, Chen H, Merkle RC, editors. Intelligence and security informatics,
volume 3495 of lecture notes in computer science. Berlin, Heidelberg: Springer; 2005. p. 648–9.

[35] Murphy M, Larsen P, Brunthaler S, Franz M. Software profiling options and their effects on security based
diversification. In: Proceedings of the first ACM workshop on moving target defense. MTD. ACM, New
York, NY, USA; 2014. p. 87–96.

[36] Schrittwieser S, Katzenbeisser S. Code obfuscation against static and dynamic reverse engineering. In: Filler
T, Pevn T, Craver S, Ker A, editors. Information hiding, volume 6958 of lecture notes in computer science.
Berlin, Heidelberg: Springer; 2011. p. 270–84.

[37] Rauti S, Holvitie J, Leppänen V. Towards a diversification framework for operating system protection. In:
Proceedings of the 15th international conference on computer systems and technologies. CompSysTech.
ACM, New York, NY, USA; 2014. p. 286–93.

[38] Rauti S, Laurén S, Hosseinzadeh S, Mäkelä JM, Hyrynsalmi S, Leppänen V. Diversification of system calls
in linux binaries. In: Proceedings of international conference on trustworthy systems (InTrust2014). LNCS
(9473); 2015. p. 15–35.

[39] Laurén S, Mäki P, Rauti S, Hosseinzadeh S, Hyrynsalmi S, Leppänen V. Symbol diversification of Linux
binaries. In: Shonigun CA, Akmayeva GA, editors. Proceedings of world congress on Internet security
(WorldCIS-2014). IEEE; 2014. p. 75–80.

[40] Uitto J, Rauti S, Mäkelä JM, Leppänen V. Preventing malicious attacks by diversifying Linux shell commands. In:
Proceedings of 14th symposium on programming languages and software tools (SPLST’15); 2015. p. 206–220.

[41] Laurén S, Rauti S, Leppänen: V. Diversification of System Calls in Linux Kernel. In: Proceedings of
international conference on computer systems and technologies (CompSysTech); ACM Press, ACM ICPS,
Dublin, Ireland. 2015. p. 284–291.

[42] Leppänen V, Rauti S, Laurén S. Wide application security by low-level program code obfuscation techniques.
In: MATINE Report 2014; 2015. p. 7.

[43] Rauti S, Leppänen V. A proxy-like obfuscator for web application protection. Int J Inform Technol Secur
2014;6(1):39–52.

[44] Rauti S, Parisod H, Aromaa M, Salanterä S, Hyrynsalmi S, Lahtiranta J, Smed J, Leppänen V. A proxy-based
security solution for web-based online eHealth services. In: Saranto K, Castrén M, Kuusela T, Hyrynsalmi
S, Ojala Stina, editors. Safe and secure cities, communications in computer and information science, 450.
Switzerland: Springer International Publishing; 2014. p. 168–76.

[45] Rauti S, Leppänen V. Browser extension-based man-in-the-browser attacks against ajax applications with
countermeasures. In: Rachev Boris, Smrikarov Angel, editors. Proceedings of the thirtenth international
conference on computer systems and technologies. New York, NY: ACM Press; 2012. p. 251–8.

http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0090

274 CHAPTER 14 OBFUSCATION AND DIVERSIFICATION

[46] Rauti S, Leppänen V. Man-in-the-browser attacks in modern web browsers. In: Akhbar B, Arabnia H, editors.
Emerging trends in ICT security, emerging trends in computer science & applied computing. Waltham, MA:
Morgan Kaufmann Publishers; 2014. p. 169–480.

[47] Hjelmvik E, John W. Breaking and improving protocol obfuscation. Technical report 123751, Chalmers
University of Technology; 2010.

[48] Rauti S, Teuhola J, Leppänen V. Diversifying SQL to prevent injection attacks. In: Proceedings of the 14th
IEEE international conference on trust, security and privacy in computing and communications (IEEE
TrustCom-15); Helsinki, Finland; 2015. p. 344–351.

[49] Nagra J., Collberg C. Surreptitious software: obfuscation, watermarking, and tamper proofing for software
protection. Pearson Education; 2009.

[50] Ma R-H, Ota S, Li Y, Yang S, Zhang X. Explosives detection in a lasing plasmon naocavity. Nature Nanotechnol
2014;9:600–4.

[51] McMillan R. Hackers turn security camera DVRs into worst bitcoin miners ever, http://www.wired.
com/2014/04/hikvision/; 2014.

http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00014-9/ref0105
http://www.wired.com/2014/04/hikvision/
http://www.wired.com/2014/04/hikvision/

PART

IoT APPLICATIONS V
15 APPLIED INTERNET OF THINGS 277

16 INTERNET OF VEHICLES AND APPLICATIONS 299

17 CLOUD-BASED SMART FACILITIES MANAGEMENT 319

Page left intentionally blank

277

CHAPTER

APPLIED INTERNET
OF THINGS

S.J. Johnston, M. Apetroaie-Cristea, M. Scott, S.J. Cox
Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom

15.1 INTRODUCTION
In this chapter we work through an Internet of Things (IoT) example scenario, beginning with data
collection and working through to data transmission and analysis [1]. This example is designed to be
generic to ensure that the techniques are transferable, particularly as IoT devices become more com-
monplace [2]. Where possible, we utilize commodity hardware and established technologies, explain-
ing design decisions as the chapter progresses.

An in-depth knowledge of electronics or computer science is not required, and the discussed archi-
tecture is designed as a generic blueprint to facilitate other applied IoT solutions. It is intended to be
simple and overcome the most common pitfalls in setting up an IoT infrastructure.

The key requirements for the proposed architecture are:

• The hardware must be commodity and available
• The software and hardware must be low cost
• It must provide enterprise scalability
• A minimal level of electronics and computing experience is required
• Higher-level programming languages are preferred

We consider the decisions behind building a prototype for the IoT example scenario, and do not
focus on specific sensors or on their capabilities. Specific analysis tools or techniques are considered
out-of-scope. Instead, we design and build a generic prototype which is applied to an example scenario.
Building an IoT device is an iterative process, resulting in multiple prototypes and a final production
version. There are two objectives when building a prototype:

• To demonstrate that the scenario concept is viable; for example, to ensure that the data collected is
appropriate to validate a hypothesis.

• To test that the hardware will perform as expected; for example, ensuring the data precision and
that all of the hardware can coexist.

The number of IoT devices required will dictate the development cycle. For example, as the vol-
ume of devices increases, more emphasis is attached to the hardware costs. For low volumes, building
custom devices in-house is appropriate, but for high-volume devices professional design and assembly
is required.

15

278 CHAPTER 15 APPLIED INTERNET OF THINGS

Before beginning production of a large volume of devices, a well-thought-out and thoroughly tested
prototype is required. In our chosen scenario we are interested in low volumes of devices, but will
ensure that there is a path to higher-volume production. For example, we can ensure that development
hardware designs are open sourced, to enable redesign and manufacture without incurring licensing
costs.

Throughout the design cycle it is important to consider how the final IoT device will be used, and
to ensure that it complies with local and international regulations, especially if made commercially
available. This is particularly important if the device incorporates wireless technologies or controls
high AC current.

In this chapter, we focus on low-volume custom IoT devices that are possible with commodity hard-
ware, and consider IoT device-certification and local regulatory requirements out-of-scope.

15.2 SCENARIO
Imagine you would like to know the weather outside in your garden. In an ideal IoT world, you would
have a range of sensors, for example, a temperature sensor that can talk directly to the Internet. This
would be achieved by sending the temperature data from the sensor directly to a backend service via the
Internet. The backend service would probably display the data on a web page and would ideally offer
the ability to display and analyze the data.

There are a few complexities associated with such a simple example. The most obvious is that most
sensors cannot communicate via the Internet to backend services. In part this is due to the cost of hav-
ing Wi-Fi or wired Ethernet connections to every sensor, and in part also due to the electrical power
required. Supporting a full TCP/IP networking stack on every sensor is not required if a low-power
wireless network is available. It is for these reasons that local sensors often communicate via a gateway,
which can broker or relay messages across the Internet.

Adding a single Wi-Fi or wired Ethernet Internet connection to a gateway which communicates to
a group of sensors or actuators is more cost-effective. The Internet connection can then be shared by
using either local wired or wireless connections between the gateway and local devices.

The aim of this chapter is to design, build, and test an environmental-sensing IoT architecture for
weather monitoring. The architecture must use commodity hardware and software to produce a system
that is secure, reliable, and low cost.

It must be generic and applicable to alternative application areas by swapping the sensors/actuators.
The weather station will reside outdoors in a suitably exposed location and will need to record values
from various sensors at regular time-intervals, mainly temperature, humidity, wind speed and direction.
This data needs to be reliably stored and transmitted for use in analysis, graphs, and for consumption
by external services.

15.3 ARCHITECTURE OVERVIEW
There are three key components to an IoT architecture: the sensors and actuators, the gateway, and the
backend services. These three components communicate via a wide variety of interfaces and protocols,
and, as a whole, enable the functionality of an IoT device, as shown in Fig. 15.1.

27915.3 ARCHITECTURE OVERVIEW

• The sensors and actuators are application-specific and will require some thought to ensure that
the data collected meets the accuracy and sampling frequency required for analysis.

• The gateway is responsible for communicating with the sensors and actuators as well as the
backend services; it is a translator between localized interfaces, such as hard-wired sensors and
remote backend systems. It basically adds TCP/IP capability to sensors, and, although it could be
part of a sensor, we separate the gateway to allow a many-to-one mapping with sensors, as well as
additional functionality, such as data persistence for unreliable Internet connectivity. The gateway
is optional in IoT sensor-devices that can communicate directly with the Internet; either the
sensor becomes very lightweight and has minimal functionality, or some of the desired gateway
functions such as data persistence and security are incorporated into the sensor.

• The backend services are predominantly used to store the IoT device data but can include
additional functionality such as individual device configuration and analysis algorithms. It is
beneficial to also consider data analysis as part of the backend, since the data is only useful if it
can be analyzed. As the volumes of data grow, this becomes critically important, for example, low
bandwidth between a data store and compute cluster will reduce the ability to process all the data
in a timely fashion.

Communication between these three components ensures that data collected by an IoT device can
be transported via the Internet to backend services. The communication must be bidirectional so that
the configuration of the gateway can be updated, for example, to change the polling frequency of sen-
sors or to manipulate actuators.

15.3.1 SENSOR TO GATEWAY COMMUNICATION
The sensors themselves usually have low-level electronic interfaces for communication. For example,
I2C and SPI are common serial-communication buses capable of linking multiple electronic compo-
nents.

Connecting one or more sensors to the serial bus of a gateway device is a simple way of creating
an IoT device. The transmission distance of many hard-wired interfaces can be an issue. For example,
a few meters for I2C and up to 1 km for RS-485. In its simplest form, the gateway is a converter from
these lower-level electronic interfaces to Internet-compatible interfaces.

FIGURE 15.1 IoT Architecture Key Components and Example Protocols

280 CHAPTER 15 APPLIED INTERNET OF THINGS

Many sensors come with multiple electronic interfaces or are available in different flavors, each with
their own advantages and disadvantages. There are two key categories of interfacing, those that are physi-
cally close to the gateway, perhaps on the same Printed Circuit Board (PCB), and those that are slightly
farther from the gateway, for example, on a length of cable. The chosen interface dictates the physical
characteristics of the device and is therefore application-specific. It is important to select the correct inter-
face. The characteristics of the most common wired and wireless gateway interfaces are listed as follows.

15.3.1.1 Wired Gateway Interfaces
• Inter-Integrated Circuit (I2C) or Two Wire Interface (TWI) is a serial bus capable of hosting

multiple master and multiple slave devices using just two connections: Serial Data Line (SDA)
and Serial Clock Line (SCL). It is an easy-to-implement bus, well understood and commonly
used, making it a good choice for IoT sensor communications. Although often considered
slow, it is capable of 3.4 Mbit/s in fast mode, but is generally limited to 400 kbit/s for most
implementations. As the name indicates, it is intended for communication between integrated
circuits, so it is ideal for sensors on the same PCB as the gateway, but it will also run over wires.
The clock frequency and total bus capacitance will generally limit the range to a few meters, but
in theory, distances in excess of 100 m are possible.

Since one of the connections is transmitting the clock signal, it supports any arbitrary data-
transmission speed, including pausing the data transmission through a process called clock
stretching, for example, to give a component time to process the received data. Devices that do
not support clock stretching are often referred to as TWI or just “2-wire” [3]. Many I2C devices
have their address set by the manufacturer, which can cause problems if multiple devices are
put on the same bus because it is possible to get an address clash; this can be solved by using an
additional I2C bus.

• Serial Peripheral Interface (SPI) is a serial bus capable of hosting a single master with multiple
slave devices per bus. It uses three connections plus one connection per slave device: Serial Clock
(SCLK); Master Output, Slave Input (MOSI); Master Input, Slave Output (MISO); and Slave
Select (SS).

SPI is very common and has a lower power consumption than I2C, but requires more
connections; most notably every slave requires a slave-select pin so that it knows when to listen to
the bus transmission. Some SPI implementations daisy-chain the slave-select pins to create a shift
register, so that only one slave-select pin is required.

The maximum clock speed is determined by the components, usually the slave devices,
and controlled by the master. Often clock speeds can reach 32 MHz, but there is no theoretical
maximum; combined with full-duplex communication, this provides SPI with a higher throughput
than I2C.

• Pulse-Width Modulation (PWM) is not an interface, but is rather a technique to encode a message
by varying the power supplied by a digital pin. It works by turning the PWM pin on and off at
different frequencies to lower the average voltage supplied to the load. It is often implemented
in hardware to ensure accurate timings of each pulse, permitting switching frequencies of up to
1 MHz. The duty-cycle (the percentage of time the output is high/on) resolution is the number of
discrete values that the PWM pin can output, for example, a 10-bit resolution on a 5-V digital pin
will allow for 1024 different voltage outputs between 0 and 5 V. This could relate to motor speed
or servo angle.

28115.3 ARCHITECTURE OVERVIEW

The PWM technique is common for dimming LEDs or for creating analog outputs, and is
commonplace for controlling variable-speed motors.

• Universal Asynchronous Receiver/Transmitter (UART) refers to the hardware that converts
parallel to serial communications, and is often simply called serial, rather confusingly; it is
actually the communication standards over UART to which people are generally referring; the
most common are RS-232 and RS-485.

RS-232 connectors are no longer commonplace on computers but are easily added using a
USB-Serial chip from manufacturers such as FTDI. Speeds of up to 1 Mbit/s are achievable,
but this is often limited by the slave device. Cable lengths are limited to 15 m at 19.6 kbit/s,
depending on the quality of the cable. There are two variants, a 3-wire and a 5-wire, with the
5-wire variant providing hardware flow-control for improved speed.

RS-485 is well suited to longer distances, and enables data transmissions of 35 Mbit/s up
to 10 m, but can be used for distances in excess of 1 km at lower speeds. It is commonplace in
building automation and for protocols such as MODBUS. It also permits up to 256 devices on a
single connection.

• A Controller Area Network (CAN) is a message-based protocol defined by ISO 11898-1 that
allows multiple-master device communication. It was designed over the last 30 years for in-
vehicle electronic networking, and has been adopted by automotive, railway, and aerospace
industries.

Every device on the network has a CAN controller chip. All the devices in the network can
see the transmitted messages, on which they can perform message filtering. Each message has
an ID that is used for filtering and bus prioritization. The bus also has an error-handling scheme
which allows for messages that are not transmitted properly to be retransmitted. This network
structure allows modifications to the network with minimal impact, for example, the addition of
nontransmitting nodes. The access to the bus is controlled by a nondestructive bit-wise arbitration.

The physical layer is not specified, but is generally two wires for communication and two for
power, allowing speeds of 1 Mbit/s for over 40 m.

• Analog to Digital-Converter (ADC) is a device that converts a continuous analog voltage to a
digital number. The number of bits used to store this number relates to the accuracy of the ADC,
for example, an 8-bit ADC is capable of 256 discrete values, which for an analog voltage range of
0–5 V would give a resolution of 0.019 V.

The most common ADC devices range from 8-bit to 16-bit, but they can easily exceed 24-bit.
It is important to ensure that the analog signal that is being encoded is sampled at a high enough
resolution to ensure that analog variations are not lost.

It is possible to create an ADC using a GPIO pin by emulating the way some microcontroller
ADCs work. The nonlinear ramp-compare ADC uses a capacitor that charges with the input
analog signal and then discharges across a resistor. By monitoring the time it takes for the
capacitor to discharge, it is possible to calculate the input voltage.

• General Purpose Input Output (GPIO) is a general-purpose pin whose behavior can be controlled
by the user at the runtime. Some of these GPIO pins can be configured to function as Interrupt
Request (IRQ) inputs. The GPIO interrupts are implemented using electronic alerting signals that
are sent to the interrupt controller from a GPIO pin, to communicate that it requires attention from
the operating system. The GPIO can be set to interrupt on either a rising, falling, or on both edges
of the incoming signal. The interrupt controller sends the signal to the CPU, which suspends its

282 CHAPTER 15 APPLIED INTERNET OF THINGS

current operation to execute the process associated with the interrupt. A device connected to the
GPIO IRQ pin drives a pulse onto the interrupt line, when signaling an interrupt would otherwise
leave it floating.

The alternative of using interrupts is polling—the system checks for changes periodically.
However, in this case the processing time and power are increased, and there is a risk of
introducing lags between occurrence and detection of an event.

• 1-Wire is a device communications bus-system capable of hosting multiple slave devices
connected to one single master, using a serial protocol for communication with a single data-
line plus ground reference. The data line can also be used to provide power to the slave devices
(parasitic power mode), or they can be powered up externally, in which case, an extra wire
per slave would be required. The 1-Wire concept is similar to I2C, having a longer range but
lower data rates. It has two serial communication speeds: Standard (15.4 kbit/s) and Overdrive
(125 kbit/s), and can be used to communicate with small devices, such as weather instruments.

Each device has a factory-programmed unique ID that serves as its address on the 1-Wire
bus, allowing for multiple devices to share the same bus. A single pull-up resistor is common
to all devices, used to pull up the bus to 3 V or 5 V and to provide power to the slaves. The
communication occurs when the master or the slave connects the pull-up resistor to the
ground.

• X10 is a protocol for communication between automated home-electronic devices. It controls any
device plugged into an electric powerline by signaling digital information in the form of short
radio-frequency bursts. The X10 standard is a well-known protocol, easy to use, inexpensive, and
highly available, which makes it very popular within the home automation environment, although
a number of higher bandwidth alternatives exist.

 The packets transmitted using the X10 protocol consist of a 4-bit house code followed by one or
more 4-bit unit codes, finally followed by a 4-bit command. There are two types of X10 devices:
one-way devices and two-way devices. The one-way devices are inexpensive, but they can only
receive commands and are not able to transmit them to the whole network. The two-way device
allows for more complex network communication, but it is much more expensive.

15.3.1.2 Wireless Gateway Interfaces
Wiring sensors to a gateway device is not always practical; it is for this reason that wireless technolo-
gies are often used. Wi-Fi 802.11a/b/g/n consumes a lot of power, so there are other wireless technolo-
gies which are also commonplace and applicable. For example:

• Bluetooth Low Energy is a wireless personal-area-network technology that aims to provide similar
capabilities to classic Bluetooth, but at lower power consumption and cost. Due to its low-power
consumption, it can be used by small devices, such as watches and toys, and in areas such as
healthcare, beacons, and fitness. This makes it very useful for IoT wireless communication. It
has a master/slave topology, the number of active slaves being implementation-dependent. The
Bluetooth Low Energy can send up to 1 Mbit/s of data over distances greater than 100 m.

• IPv6 over Low-Power Wireless Personal Area Networks (6LowPAN) is a networking
technology that allows IPv6 packets to be sent and received within small link-layer frames,
such as the ones based on IEEE 802.15.4. It provides low-power networking support for mesh
networks using an end-to-end IP-based infrastructure, making it a very useful technology for
IoT applications. It has low data-transfer rates, being able to transmit up to 250 kbit/s over

28315.4 SENSORS

distances of up to 200 m. It operates in the 2.4 GHz frequency range only, and it can support up
to 100 nodes per network.

• INSTEON is a home-automation technology that enables electrical devices to interoperate through
power cables, radio-frequency communications, or both, using a dual-mesh networking topology.
For example, it can be used to control LED bulbs, wall switches, sensors, or remote controls. The
RF physical layer can transmit up to 2.88 kbit/s for up to 46 m [3].

• Infrared is not often an immediate consideration when looking at wireless networks, but can
be useful for interacting with existing devices, such as heating controllers, air conditioners,
and television receivers. The Infrared Data Association (IrDA) claims speeds of 1 Gbit/s over
distances of up to 3 m [4].

• Z-Wave is a wireless-based home-automation system designed for controlling electrical devices
within a household such as heating and lighting. It uses an open-routed mesh networking topology
and can support up to 232 devices per network. Z-Wave has low power consumption, and can
be used by battery-powered devices, being able to transmit small data-packets at rates of up to
100 kbit/s for average ranges of up to 100 m [3].

• ZigBee is a wireless-based open, global standard used for personal-area networks targeted at
low-power applications with infrequent data transmission needs. It operates on the 802.15.4
standard and enables wireless mesh networks with low-cost and low-power solutions. It can
transmit 250 kbit/s over distances of up to 100 m, and supports up to 65,000 nodes per network.
It has many applications, for example, in lighting control, healthcare devices, and electrical
meters [3].

• Xbee is not a standard, but rather a communication-module product that provides wireless end-
point connectivity to devices using the IEEE 802.15.4 protocol. It is partially compatible with
ZigBee. It is one of the most popular communication modules for low-power applications, being
able to offer fast point-to-multipoint or peer-to-peer networking. It can send data at rates of up to
250 kbit/s over distances of up to 11.6 km.

15.4 SENSORS
We will now discuss the sensors required to build the environmental-sensing IoT gateway device for
weather monitoring, as introduced in Section 15.2.

The IoT application area will drive the sensor selection and specification. In the current section,
we select a range of different sensors with a variety of capabilities as examples. The sensors have a
reasonable accuracy for an external weather station, and will all be connected simultaneously, although
many IoT requirements will have fewer sensors. Table 15.1 provides a summary of the sensors, their
electronic interface, and hardware specifics.

The ultraviolet (UV) intensity sensor uses an ML8511 [5] detector, which is most effective between
280 and 390 nm, and will detect both UVA and UVB. The output is a linear voltage relating to the UV
intensity (mW/cm2), which can be read using an analog pin and then converted to a UV index.

The wind vane has eight magnetic reed switches arranged in a dial; each reed switch is connected
to a different-sized resistor. As the vane changes direction a magnet moves, making and breaking the
switches, and therefore changing the resistance of the circuit. The magnet is sized such that when it is
halfway between two reed switches both will be connected. This will give a total of 16 distinct circuit

284 CHAPTER 15 APPLIED INTERNET OF THINGS

resistances, hence 16 positions indicating wind direction, as shown in Fig. 15.2. This is a crude sensor
and with a resolution of 22.5 degrees, but is an excellent example of a simple analog circuit. A 5-V
supply is connected to the wind vane, and the enabled resistors act as a voltage divider; by reading the
voltage using an analog pin, it is simple to tell which resistors are enabled in the circuit, and hence
establish the wind direction.

The three-cup hemispherical anemometer is used to calculate the wind speed. As the anemometer
cups rotate, a single magnet on the device closes a reed switch, completing the circuit. This particular
device has two reed switches, resulting in the circuit closing twice per revolution. Connecting one end

FIGURE 15.2 Wind-Vane Voltage Divider Circuit, Reading the Output With an Analog to Digital Converter Can
Give Up to 16 Distinct Wind Directions

Table 15.1 Summary of Weather-Station Sensors

Sensor Interface Processor/Hardware Power

Wind vane Analog Switched resistors —

Anemometer GPIO interrupt Reed switch —

Rain gauge GPIO interrupt Reed switch —

UV intensity Analog ML8511 1,000 µW

Humidity and temperature 2-wire serial SHT15 80 µW

Barometric pressure I2C BMP180 30 µW

Luminosity I2C TSL2561 720 µW

Lightning sensor SPI + GPIO interrupt AS3935 100 µW

Geiger counter RS-235 LND712 147,000 µW

Weather board I2C Si7020 540 µW

Weather board I2C BMP180 30 µW

Weather board I2C Si1132 1,419 µW

28515.4 SENSORS

of the circuit to ground and the other to a GPIO pin pulled high, we will get an interrupt every time the
magnet passes. Counting the interrupts will provide a wind speed, for example, a wind of 2.4 km/h will
result in a single rotation of the cups and two interrupts every second.

The rain gauge is a self-emptying tipping bucket; each time the bucket empties it moves a magnet
past a reed switch, which will close the circuit. In the same way as the anemometer, we can count
these interrupts over time and calculate the rainfall. In this particular gauge the bucket tips with every
0.28 mm of rain.

The SHT15 temperature and humidity sensor is a very reliable low-cost sensor, with an accuracy of
±0.3°C and relative humidity at ±2.0%. The SHT1X range of sensors are precalibrated and provide a
serial 2-wire interface, which can coexist with I2C but cannot be addressed. The easiest way to commu-
nicate with this sensor is to use two GPIO pins: one for the clock and one for the data. By manipulating
the GPIO pins we can clock commands into the sensor and read the data back.

The BMP180 is a digital pressure-sensor, which can measure atmospheric pressure between 950
and 1050 hPa, with an accuracy of 0.12 hPa. An accurate temperature reading is needed to measure
the pressure so that the BMP180 can also be used as a temperature sensor. The pressure readings can
be converted into altitude using the international barometric formula. The BMP180 has an I2C serial
output and a fixed address, and it can be connected to an I2C bus together with other sensors, providing
there is not an address clash.

The TSL2561 luminosity sensor detects infrared and full-spectrum light, and has an I2C serial out-
put. The sensor can be used for lux calculations and has a configurable slave address (a total of three
different address combinations are possible).

The AS3935 Franklin lightning sensor detects lightning within a 40-km range and estimates the
distance to the head of a storm. It can detect cloud-to-cloud and cloud-to-ground lightning, as well as
identify and reject interferences, for example, from fluorescent lighting, microwave ovens, switches,
and mobile phones. It offers both I2C and SPI serial interfaces, and will provide a GPIO interrupt when
lightning is detected. By querying the device via the I2C or SPI bus, you can obtain information about
the type of detection, and, in the case of lightning, the distance.

The Geiger counter board is based on a LND712 Geiger tube, with an ATmega328 to process the
results. The data is output over a serial RS-232 connection via an FTDI serial over a USB processor.
This is an excellent example of a sensor which is complex enough to require a coprocessor, in this case,
the ATmega328. The ATmega328 is commonly used in the Arduino development platform [6], and is an
excellent starting point for beginner electronics projects. This sensor with coprocessor is a model worth
considering for custom sensor development.

All the previous sensors have been single-sensor modules, but it is also common to group sensors
together on a single PCB. This reduces costs and eliminates some of the wiring, but limits the sensor
selection. The physical-form factor can also be an issue, as sensor positioning is critical for accurate
measurements. For example, a lux sensor needs to be exposed to light, whereas a barometer should not
be exposed to wind—having them on the same board complicates the physical design.

In the case of a weather station, there are plenty of single-board options; we are using a weather
board with the following three sensors:

• The Si1132 is a UV index and ambient-light sensor with I2C interface, and is comparable to the
TSL2561 luminosity sensor.

• The BMP180 is the same sensor described previously.
• The Si7020 temperature and humidity sensor is less accurate than the SHT15.

286 CHAPTER 15 APPLIED INTERNET OF THINGS

15.5 THE GATEWAY
Next we consider the IoT gateway device, which can be split into the hardware and the software.

Selecting the hardware to sit between sensors and an Internet connection requires careful thought.
In its simplest form, the gateway reads data from the sensor’s electronic interface and transmits it to a
destination across the Internet. For this to take place, the gateway must have the appropriate electronic
interfaces, a processor with memory, and either wired or wireless Internet capability. Often, using a
small microprocessor such as those used by Arduino would be perfect. However, such a simple design
omits some of the critical IoT features such as Secure Sockets Layer (SSL) or Transport Layer Security
(TLS), a cryptographic protocol that provides communication security over TCP.

The specific IoT application area will drive the hardware selection, for example, if it has to oper-
ate in a low-power, off-grid location, or if electromagnetic interference or radiation are a concern.
If we were to focus on application-specific functionality or power consumption, the result would be
a heavily customized device (eg, with custom firmware). This would provide little option for exten-
sibility or adaptability to other applications, since all noncritical functionality would be removed
to save power. If an application area requires specific hardware, such as Digital Signal Processing
(DSP) or hardware video-encoding, or has a real-time requirement, this needs to be taken into con-
sideration.

In this example IoT device, the following features are identified as requirements, and are used to
select the gateway hardware:

• Electronic interface: All of the required electronic interfaces for the sensors must be present, for
example, SPI, ADC, and I2C. This includes the correct bandwidth, number of connections, and, in
the case of an ADC, the correct resolution.

• Data persistence: The IoT gateway will transmit data to the Internet, but Internet connections are
unreliable, especially in mobile IoT applications. Losing data is unacceptable, so the IoT gateway
needs to be able to cache the unsent data, even if it has to hibernate or it loses power. Durable
storage is required with sufficient capacity to collect data at the maximum rate at which it is
generated.

• Wired or wireless Internet stack: The Internet connection can be provided by either Wi-Fi or an
Ethernet cable, depending on the location of the IoT device. It should support a standard TCP/IP
stack and preferably support IPv6 for future compatibility.

• Data encryption: It is good practice to ensure that all data transmitted is encrypted, regardless of
its perceived value. The IoT device requires sufficient processing power to encrypt transmissions
without impacting sensor operation.

• Data-processing capability: The more sensors that get added, the more data will be produced.
The gateway needs sufficient processing power and bandwidth to cope with peak demands. In
addition, it may be necessary to preprocess the data from a sensor to either filter or aggregate
readings before transmission.

• Programmability: The hardware needs to be simple to program, preferably in a high-level
language or by using nonhardware-specific libraries.

• Low cost and commercially available: The hardware needs to be available, but cost also needs to
be considered. The IoT ethos indicates that there will be large numbers of devices, which puts a
greater emphasis on the cost.

28715.5 THE GATEWAY

• Device security: It is difficult to secure a device which can be physically compromised. A basic
level of security should be offered to ensure that, for example, false data cannot be injected from a
compromised gateway.

• Future proof: Hardware prices are constantly falling and electronic-power performance is
improving. Reducing costs and improving performance by updating hardware is only an option if
the software is easily portable.

15.5.1 GATEWAY HARDWARE
As new hardware is constantly appearing, we divide the available hardware into groups and select the
preferable hardware for the gateway, based on the previously outlined requirements. It is worth revisit-
ing the hardware market frequently to identify better-suited hardware.

A microprocessor usually only offers processing power and requires RAM and storage to be added
as separate chips on a PCB. This results in a lot of additional work and power, whereas a micro-
controller has most of the basics embedded on a single chip; it is for this reason that we consider
microcontrollers for the gateway hardware. Table 15.2 shows a selection of common microcontrollers.
They tend to have a low clock-speed and are suitable for real-time applications. Programming requires
low-level languages such as C or assembly.

More powerful microcontrollers exist, and are often referred to as a System on a Chip (SoC), al-
though the distinction between them is blurred. The term microcontroller often refers to low-memory,
low-performance, single-chip devices, whereas a SoC usually supports an operating system such as
Linux or Windows, although this is not a definition. Table 15.3 shows a selection of common SoC
processors.

Both a microcontroller and a SoC are of little use on their own; they need to be assembled on a
PCB with other components, for example, power regulators, pin headers, and peripheral interfaces. The
easiest way to build a prototype is to use a development board. The development board, often called
an evaluation board, will expose all the electronic interfaces, and provide a way to program and power
the chosen chip. For example, the Arduino UNO shown in Fig. 15.3 is a development board for the
ATmega328.

Table 15.2 Common Microcontroller Details

Microcontroller Clock (MHz)
RAM/Flash/
EEPROM KB I/O

MSP430 25 66/512/0 12-bit ADC, 74 GPIO, SPI, I2C, UART/USART, USB,
LCD, DAC, RTC

ATSAM3X8E 84 100/512/0 12-bit ADC, 54 GPIO, SPI, UART/USART, USB,
DAC, RTC, PWM, CAN, SDIO/SD/MMC, NFC, TWI

ATtiny828 20 0.512/8/0.256 10-bit ADC, 28 GPIO, SPI, I2C, UART/USART, PWM

PIC32MX 80 32/512/0 10-bit ADC, 16 GPIO, SPI, I2C, UART, JTAG USB,
CAN, Ethernet, DMA controller

288 CHAPTER 15 APPLIED INTERNET OF THINGS

FIGURE 15.3 Arduino UNO Development Board With ATmega328 Microcontroller

Table 15.3 Example System on a Chip (SoC) Hardware

SoC Cores/Clock GPU I/O

Exynos5422 4 × 2.1 and
4 × 1.5 GHz

ARM Mali-
T628MP6

ADC, GPIO, I2C, SPI, UART, USB, HDMI, SDIO/
SD/MMC, PWM, LCD, MIPICSI2, eDP, PCM, I2S, S/
PDIF, PMIC, DMA Controller, MCT

S805 4 × 1.5 GHz ARM Mali-450 ADC, GPIO, SPI, I2C, UART, USB, DDIO/SD/MMC,
PWM, SDXC/SDHC/SD, I2S, SPDIF, HDMI, PCM,
Ethernet

AM3358 1 × 1 GHz SGX530 ADC, GPIO, SPI, I2C, UART, CAN, USB, SDIO/SD/
MMC, McASP RTC.

BCM2836 4 × 900 MHz Broadcom Video
Core IV

GPIO, SPI, I2C, UART, USB, PWM, PCM/I2S, DMA,
Timers, Interrupt Controller.

E3845 4 × 1.91 GHz Intel HD
Graphics

USB, I2S, SIO, eDP, DP/HDMI, VGA, SIO

i.MX6Solo 1 × 1 GHz VivanteGC880
for 3D and Vivan-
teGC320 for 2D

ADC, GPIO, SPI, I2C, UART, USB, ESAI, I2S/SSI,
Ethernet, FlexCAN, NANDCntrl, PCIe, MIPIHSI, S/
PDIFTx/Rx, HDMI, LVDS

IntelQuark-
SoCX1000

1 × 400 MHz N/A ADC, 16GPIO, SPI, I2C, UART, USB, SDIO/SD/
eMMC, DMA, RTC, PCIe, Ethernet, CSMSA/CD

28915.5 THE GATEWAY

If the IoT device is to be made in low volumes, then the development board can be used in the
final design, whereas for larger numbers it is best to get custom boards manufactured. It is important
to understand any royalties or licensing restrictions associated with manufacturing custom boards, for
example, disclosing derived works.

15.5.2 GATEWAY SOFTWARE
The more powerful a microcontroller or SoC, the more complicated the software becomes, for exam-
ple, there will be more interrupts and electronic interfaces. To manage the processing power efficiently,
supporting libraries are required, for example, for threading.

In Table 15.4, we look at how different platforms meet the IoT requirements for this specific weath-
er-station gateway example.

The Arduino platform offers a great deal of libraries for all sorts of hardware, but ultimately the
CPU and processing capabilities, combined with the lack of a full TCP/IP stack, make it unsuitable for
a gateway.

The .NetMF platform is open source and supports high-level programming languages such as C#
and Visual Basic, and provides libraries for SSL, but it only runs on a limited set of hardware. Overall,
.NetMF would be a good contender for the weather-station gateway.

The Mbed platform is excellent for IoT devices, it supports SSL, and there is a good selection of
supported hardware. Programming is done with C, which may be difficult for beginners. Commercial
licensing must be considered, depending on the libraries and hardware utilized. The Mbed operating
system is designed specifically for IoT, making it an excellent choice if you are comfortable program-
ming in C.

The Microsoft Windows 10 IoT platform is a full OS that is targeted toward IoT devices. It runs the
Windows 10 kernel and supports high-level programming languages such as C#. There are libraries to
support most electronic interfaces, and it is designed to interoperate with cloud backend services. The
supported hardware is currently very limited, making it unsuitable for the weather-station gateway.

There are many variants of Linux available for embedded systems. They are generally well sup-
ported, and are capable of interfacing with a wide range of hardware. Many programming languages,

Table 15.4 Platform Capability for Different IoT Requirements

Arduino Platform .NetMF Mbed Windows IoT Linux

Electronic interfaces × × × × ×

Data persistence × × × × ×

Wired or Wireless Internet stack × × × ×

Data encryption × × × ×

Programmability × × ×

Low cost commercially available × × ×

Device security × ×

Future proof × ×

290 CHAPTER 15 APPLIED INTERNET OF THINGS

environments, and libraries are available, and software programs are easily ported to new hardware. If
the “device security” requirement is to be met, then storage encryption and specialist hardware such
as a Trusted Platform Module (TPM) chip should be used. Linux is the most versatile option for the
weather-station gateway, as it offers a range of development environments and languages, has good
hardware support, and has extensive libraries. It is the easiest for beginners, supports high-level lan-
guages such as Python [7], and is simple to lock down with disk encryption.

Hardware capable of running a full Linux operating system is more expensive than a simple microcon-
troller, for example, the memory requirements mean that off-chip memory is required. The processor needs
to be more powerful, and the total electronic power consumption of the IoT device will be considerably
greater than that of a custom microcontroller device. Platforms such as Mbed may be better suited to this.

There are many variants of Linux that run on ARM-based single-board computers, such as Android,
Slackware, Gentoo, openSUSE, Fedora, and Arch Linux, to name a few. Although they are all similar, select-
ing a variant is down to personal preference and compatibility with the chosen hardware. The variant which
particularly stands out is Snappy Ubuntu Core. It has support for fault-tolerant upgrades and APIs for cloud
service- providers. We will base the weather-station example on Snappy Ubuntu Core.

15.5.3 SUMMARY
Based on the requirements for the weather-station example and the collection of sensors, we have opted
for a single-board Linux computer, powered by a System on a Chip (SoC). The main driving force be-
hind this is to make an easily transferable example rather than a custom-built device. The implications
of this are that the hardware is relatively expensive and the power consumption will be considerably
higher compared to a microprocessor. The weather-station example will be easily transferable to other
application areas as well as to newer hardware. Table 15.5 shows a range of single-board computers
compatible with Linux variants, as well as the supported electronic interfaces. We decided to use the
Snappy Ubuntu Core Linux distribution as the main OS.

15.6 DATA TRANSMISSION
The sensor data needs to be transmitted to the backend services via the Internet. To do this we have an IoT
gateway with either wired or wireless Internet access. The data is packaged for transmission and received
by an online service. Traditionally the online service would use Remote Procedure Calls (RPC) [6] or
Simple Object Access Protocol (SOAP) [8], but these are rather heavyweight and have been superseded
by protocols such as Representational State Transfer (REST) and frameworks such as Apache Thrift [9].

SOAP transmits messages over different application protocols such as HTTP [9]. It is designed
to allow interoperability between different services by exchanging messages, but is considered rather
verbose. The default message transmission is XML but this can be substituted by binary encoding to
reduce the message size.

REST uses HTTP to transmit messages at the application layer. This way, any device which can
communicate via HTTP can interact with a REST backend service. HTTP is well understood, and
widely supported in many languages on many different hardware platforms, providing a greater level
of flexibility for IoT devices. It is lightweight and supports different message payloads, for example,
JSON and MIME [10,11].

2
9

1
1

5
.6

 D
ATA

 TR
A

N
SM

ISSIO
N

Table 15.5 Comparison of Low-Cost, Single-Board Computer Development Boards

Mainboard
(SoC) RAM Storage USB Interfaces Size (mm)

Cost
~USD 2016

ODROID-XU4
(Exynos 5422)

2 GB,
933 MHz

MicroSD, eMMC 1 × USB 2.0, 2 × USB 3.0 ADC, 42 GPIO, SPI, I2C,
UART, PWM, RTC I2S,
HDMI, PMIC.

82 × 58 × 22 70

ODROID-C1
(S805)

1 GB DDR3
SDRAM

MicroSD Card Slot,
eMMC module socket

4 × USB 2.0 Host, 1 × USB
2.0 OTG

ADC, 40 GPIO, SPI, I2C,
UART, HDMI, RTC, IR
Receiver, DMC, PLL/OSC.

85 × 56 60

BeagleBone
Black(AM3358)

512 MB
DDR3

MicroSD Card Slot,
4GB 8-bit eMMC
on-board flash storage

1 × USB host, 1 × USB
miniB

ADC, 66 GPIO, SPI, I2C,
UART, CAN, PWM, LCD,
GPMC, MMC1, 4 Timers.

86.4 × 53.3 50

Raspberry
Pi 2 Model B
(BCM-2836)

1 GB (shared
with GPU)

MicroSD Card Slot 4 × USB ADC, 17 GPIO pins, UART,
SPI, I2C.

85.6 × 56.5 30

SECOpITX-BT
(E3845)

Up to 8
DDR3L-1333

MicroSD, eMMC
(optional), S-ATA
connector

2 × USB 3.0 Host, 2 × USB
2.0 host (header), 1 × USB
2.0 host (miniPCI-e),
RS-232, RS-422, RS-485

1 × RS-232/RS-422/RS-485 100 × 72 300

Udoo Neo
(i.MX 6SoloX)

512 MB or
1 GB DDR3

SPI Flash onboard,
MicroSD, 8-bit SDIO
interface

1 × USB 2.0 A Host
1 × USB OTG

ADC, 36 × GPIO pins,
UART, 2X CAN Bus,
PWM, I2C, SPI

85 × 59.3 80–110

Intel Galileo Gen
2 (Intel Quark
SoC 1000)

256 MB
DDR3

8MB Flash, 8KB
EEPROM, SD

1 × USB 2.0 host type A,
1 × USB 2.0 client type B

ADC, 20 GPIO, SPI, I2C,
UART, PWM, JTAG, RTC,
JTAG

123.8 × 72 70

292 CHAPTER 15 APPLIED INTERNET OF THINGS

Both SOAP and REST were not created with IoT devices in mind. By looking at these and other
technologies, we can list the top IoT data-transmission requirements:

• Efficient data-transmission packet size: Remote IoT devices using either mobile phone or satellite
Internet connections need to preserve bandwidth and data-transmission costs.

• Reliable transmission: Messages need to be resent or batched, for example, where Internet
connectivity is intermittent.

• IoT message persistence: Unsent messages need to be stored on the IoT device to survive crashes
and power outages.

• Supported by a wide range of programming languages: The message needs to be easy to build,
using a wide range of languages, and hardware suitable for IoT devices.

Based on these requirements, it is clear that we need more than just a messaging protocol: we need a
message framework. Message Queue Telemetry Transport (MQTT), Messaging and Presence Protocol
(XMPP), Data Distribution Service (DDS), and Advanced Message Queuing Protocol (AMQP) [12]
are good examples.

15.6.1 ADVANCED MESSAGE QUEUING PROTOCOL
We have chosen to use the Advanced Message Queuing Protocol (AMQP) as our messaging protocol,
as it is supported by many different server implementations, and the client is available across platforms
and programming languages. The main advantage is that AMQP is a wire-level protocol, not requiring
a verbose HTTP packet. This means that data is sent more efficiently in smaller, specifically encoded
packets. Our IoT device sends AMQP messages to a broker (server), which then passes them on to the
readers (weather-station application code). There are many AMQP-supported architectures, ranging
from publish/subscribe to content-based routing, and they are worth investigating for more complex
scenarios (we are using a simple publish and subscribe architecture).

We could run any AMQP-compatible server, such as Apache Qpid [13], RabbitMQ [14], or Apache
ActiveMQ [15], but we have chosen to use the Windows Server AMQP-compatible service, called
Windows Service Bus v1.0, which can run on any Windows server on-site installation.

We selected the Windows Server Service Bus because it is identical to the cloud-based Windows
Azure Service Bus, a fully hosted commercial service. We now have the option to use the on-site so-
lution until performance becomes an issue, and then switch over to a hosted service if required. The
Microsoft Azure Service Bus has a Service Level Agreement (SLA) of 99.9%, which is approximately
8.7 h of downtime per year. Retry and error management is still required, but the uptime should be
greatly improved over an on-site installation.

The weather-station application code is implemented in Python, and so we use the Apache Qpid
library to post messages to the Service Bus. Currently, all sensor data is stored on the IoT device in
an SQL database, which acts as a buffer before the data is transmitted. It should be possible to use an
AMQP broker to automatically persist messages until transmission is possible, however, this proved to
be problematic and made debugging difficult.

Be aware that not all AMQP broker implementations are the same. For example, RabbitMQ has
some custom features, and Apache ActiveMQ supports multiple messaging protocols but has limited
client-library support. Some implementations of an AMQP broker do not implement TLS/SSL, making
it more difficult to secure the data. The recommendation is to use a Virtual Private Network (VPN), but

29315.6 DATA TRANSMISSION

if one IoT device is compromised this could have security implications for the remaining IoT devices;
running a Secure Shell (SSH) tunnel may be an alternative.

15.6.2 BACKEND PROCESSING
Sending data to a backend service is not the end of the IoT data story: some sources predict that the
number of IoT devices will exceed 26 billion by the year 2020, excluding PCs, smartphones, and tablets
[16]. This means that any IoT backend service will need to be able to scale and maintain a high level of
availability, just to receive and store the data produced by IoT devices.

This can cause issues. Let’s assume you run a custom backend server to receive the IoT data
streams. During application or operating-system updates the service may be offline, wasting valuable
IoT data bandwidth. It is possible to run a failover service on enterprise-grade software and hardware
to improve reliability, but this increases the complexity of the setup. We have made two key decisions
for the backend services: (1) the messages will be orchestrated using a service bus supporting the Ad-
vanced Message Queuing Protocol (AMQP) [17], and (2) the processing will be orchestrated using the
Hadoop platform and supporting infrastructure [18].

15.6.2.1 Overview
The objective of the backend services varies according to the application; generally there will be both
compute and storage components. Fig. 15.4 shows the backend requirements for just the SHT15 sensor
(temperature and humidity). The data is received from the service bus, which is written to by all IoT

FIGURE 15.4 Backend Processing for the Weather Station SHT15 Sensor, Showing a Variety of Services
Supported

294 CHAPTER 15 APPLIED INTERNET OF THINGS

devices. The data is cleaned, to ensure basic validation, and to separate data from multiple sensors into
a format suitable for storage. The data is then forked into two streams:

• One stream ensures that near-real-time critical data is put on a second service bus for
consumption. In our example, the temperature and humidity data are formatted on a service bus
ready for consumption by a Connect the Dots service, which displays near-real-time data graphs
on a web page [19].

• Another stream persists the data to storage, ensuring it is available for postprocessing.

The postprocessing is split into two categories: data analytics/machine learning and application
logic. The data analytics and machine learning is used to explore the datasets and locate anomalies, for
example, to detect sensor failure. This is very much work-in-progress, and uses the Microsoft Azure
Machine Learning Studio for analysis [20].

The application logic in this example processes and filters the data to calculate the daily/weekly/
monthly minimum and maximum temperature values. The data is also formatted and pushed to external
services, such as Twitter and the Weather Observations Website (WOW) [21].

15.6.2.2 Data Processing Framework
Managing the compute and storage requirements of an IoT infrastructure will get more complex as the
number of devices, users, and supported services increases. This can be made easier by using an exist-
ing framework; we have selected Apache Hadoop.

Apache Hadoop is a versatile software framework which can utilize a cluster of computers for dis-
tributed storage and distributed compute [22]. There is a strong ecosystem of supporting modules for
data analysis, but more importantly, it is supported by multiple cloud providers (Amazon Elastic Ma-
pReduce and Microsoft HDInsight), as well as an on-site solution, for example, HortonWorks. All our
IoT weather-station data is deposited on a service bus and consumed by a single Hadoop instance. All
the data is stored in Hadoop on HDFS, and the application code is orchestrated using Apache STORM
[23], a near real-time data-processing engine.

There is a huge amount of Hadoop-related projects that assist with processing and storing data; for
example, Apache Hive provides SQL-like querying of data stored in Hadoop [24], Apache STORM
provides fast near-real-time data-processing [23], and Apache Pig is a scripting platform for processing
large datasets stored in Hadoop [25].

15.6.3 TO CLOUD OR NOT TO CLOUD
For the messaging infrastructure, we have chosen the Microsoft Service Bus, although we are not
locked to any particular vendor since any AMQP-compatible service will work, including a cloud-
hosted solution. This ensures that there is a simple progression to and from a cloud-based solution, and
that we can harness the benefits of a cloud-managed service. Comparing these benefits to an on-site
solution depends on your expertise and current infrastructure; the cloud services are commercial and
have a monetary cost.

Collecting data from IoT devices will potentially result in a large volume of data being produced;
although not officially Big Data, it still takes compute resources to process. Processing data is more ef-

29515.6 DATA TRANSMISSION

ficient if the compute resources are computationally close to the data store. Sizing an on-site infrastruc-
ture for the expected or optimal level of compute resources is difficult and costly, especially during low
demand; hence a cloud-based solution offers benefits.

A cloud-based infrastructure provides the ability to purchase compute resources as, and when, they
are required, even for short durations. This is particularly cost-efficient for cyclic or peak-demand data
analytics. Cloud providers have fast interconnects between the data stores and compute resources, mak-
ing them ideal for data processing/analytics.

The Cloud-provider market is a fast-developing space and clearly offers benefits, especially to an
IoT architecture. We are keen to harness these benefits, but fear vendor lock-in; redesigning an IoT
solution to migrate a Cloud provider is unacceptable.

Hadoop is offered by multiple cloud providers, has a wide range of powerful add-ons/tools, and can
easily be run on-site using a wide range of nonspecialist hardware, making it an ideal choice.

For this example, we have selected HDInsight, hosted by Microsoft Azure, to store and process
the IoT data, and the hosted Azure Service Bus for message transmission. For testing, debug-
ging, and experimentation we use an on-site install of Hortonworks HDInsight for computation
and processing, and an on-site install of Service Bus for Windows. A comparison can be seen in
Fig. 15.5.

FIGURE 15.5 The Chosen Architecture is Designed to Operate Equally Well On-Site and With a Cloud Provider

The technologies selected have equivalents that will allow either full or partial migration to a cloud provider.

296 CHAPTER 15 APPLIED INTERNET OF THINGS

15.7 CONCLUSIONS
In this chapter, we have described an optimum architecture for an IoT gateway device with attached
sensors. The architecture is designed to be implemented without an in-depth knowledge of electron-
ics or computer science, and is transferable to other application areas. The IoT gateway discussed is a
weather station capable of sensing a wide range of parameters, and transmitting them via the Internet
to a backend service. The backend has enough flexibility and processing power to analyze potentially
large datasets.

All the components, both hardware and software, are commercially available consumer products.
The hardware sensors demonstrate a range of common electronic interfaces, and the software stack is
chosen to provide maximum flexibility and scalability. Although cloud-based technologies are used,
only software which can run both in the cloud and on-site are considered. This provides not only the
cost and scalability benefits of a cloud-based architecture, but also the freedom to move between cloud
provider and on-site solutions.

Optimizing for a generic flexible software-stack means that we have opted to run a full operating
system on the IoT gateway device. This has serious implications, as the hardware is more expensive
and is physically larger than a customized microcontroller solution. The electronic power requirements
are also considerably greater, limiting the practicality of using the IoT gateway in remote off-grid sce-
narios.

By running a full operating system, we can utilize the wealth of knowledge and support publicly
available, and easily incorporate existing libraries and functionality. Users can select from a range of
programming and scripting environments, and migration to newer hardware is simpler. With the emer-
gence of low-cost SoC single-board computers, we can expect to see many more IoT gateway devices
running an OS.

The sensor data is first stored in an SQL database on the IoT gateway to ensure persistence through
power outages. The data is then sent via AMQP messages to the backend, via the Internet, as the con-
nectivity and bandwidth becomes available.

AMQP provides a framework for sending messages, which simplifies the architecture and mini-
mizes the amount of custom code on the IoT gateway device. AMQP is supported by a cloud-based
service bus, which is commercially available as part of the Microsoft Windows Azure cloud offering.
Using the service bus is optional and can be removed by running an AMQP server as part of the back-
end services. We include the service bus to increase the backend availability to 99.9%, as we identify
the IoT bandwidth as a limited, costly resource.

The data is stored as part of a Hadoop cluster, which provides a distributed data-store and
compute resource. Hadoop enables us to harness the power of compute clusters on-site, and
is supported by multiple cloud-providers. Hadoop has an ecosystem of modules and packages
which provide, for example, stream processing (STORM), data storage (HDFS), and querying
(HIVE). Hadoop is a very active framework; once the IoT streams are stored, there are enough
tools to support detailed analysis, and scalability sufficient to process large datasets. Fig. 15.6
shows the complete architecture of the weather-station hardware and software, as detailed in this
chapter.

297REFERENCES

ACKNOWLEDGMENTS
Much of this work was made possible by the University of Southampton summer internship program, Microsoft,
and Microsoft Research. We are particularly grateful to the following interns: Ethan Harris—cloud services and
Marian Daogaru—weather-station hardware.

REFERENCES
 [1] Telecommunication standardization sector of ITU, series Y. 2060 overview of the Internet of Things; 2012.
 [2] Rivera J, Van der Meulen R. Gartner’s 2014 Hype Cycle for emerging technologies maps the journey to

digital business. http://www.gartner.com/newsroom/id/2819918; 2014.
 [3] Gomez C, Paradells J. Wireless home automation networks: a survey of architectures and technologies. IEEE

Commun Mag 2010;48(6):92–101.
 [4] Millar I, Beale M, Donoghue BJ, Lindstrom KW, Williams S. The IrDA standard for high-speed infrared

communications. HP J 1998;49(1):10–26.
 [5] LAPIS Semiconductor. ML8511 UV sensor with voltage output. Datasheet FEDL8511-05. https://cdn.

sparkfun.com/datasheets/Sensors/LightImaging/ML8511_3-8-13.pdf; 2013.
 [6] Birrell AD, Nelson BJ. Implementing remote procedure calls. ACM Trans Comput Syst (TOCS)

1984;2(1):39–59.
 [7] Dalheimer MK, Welsh M. Running Linux, 5th ed. O’Reilly Media, Sebastopol, CA; 2006.
 [8] Box D, Ehnebuske D, Kakivaya G, Layman A, Mendelsohn N, Nielsen HF, Thatte S, Winer D. Simple object

access protocol (SOAP) 1.1, 2000. World Wide Web Consortium (2001) (W3C); 2001.

FIGURE 15.6 IoT Weather-Station Device and Supporting Backend Services

http://www.gartner.com/newsroom/id/2819918
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref0015
https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/ML8511_3-8-13.pdf
https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/ML8511_3-8-13.pdf
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref0020

298 CHAPTER 15 APPLIED INTERNET OF THINGS

 [9] I. RFC, 2616, hypertext transfer protocol—HTTP/1.1. http://www.rfc.net/rfc2616html/; 1999.
[10] Pautasso C, Zimmermann O, Leymann F. Restful web services vs. big web services: making the right

architectural decision. In: Proceedings of the seventeenth international conference on World Wide Web,
ACM; 2008.

[11] Aho AV, Sethi R, Ullman JD. Compilers: Principles, Techniques, and Tools. Boston, MA: Addison-Wesley
Publishing Company; 1986. Addison-Wesley series in computer science and information processing.

[12] International organization standardization, ISO/IEC 19464:2014 information technology—advanced message
queuing protocol (AMQP) v1.0 specification. ISO/IEC; 2014.

[13] Apache, Qpid [Online]. http://qpid.apache.org/; 2015.
[14] Videla A, Williams JJW. RabbitMQ in Action: Distributed Messaging for Everyone. Manning Pubs Co Series.

Shelter Island: Manning Publications Company; 2012.
[15] Apache, ActiveMQ. http://activemq.apache.org/; 2011.
[16] Middleton P, Kjeldsen P, Tully J. Forecast: the Internet of Things, worldwide; 2013.
[17] OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0. OASIS Standard. http://docs.oasis-open.

org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf; 2012.
[18] Apache, Hadoop. https://hadoop.apache.org/; 2015.
[19] Bloch O. Connect the Dots [Online]. https://github.com/Azure/connectthedots; 2015.
[20] Microsoft. Microsoft Azure Machine Learning. https://studio.azureml.net/; 2016.
[21] MetOffice. Weather Observations website; site ID 938516001. http://wow.metof http://ce.gov.uk/; 2015.
[22] Cox SJ, Cox JT, Boardman RP, Johnston SJ, Scott M, O’Brien NS. Iridis-pi: a low-cost, compact demonstration

cluster. Cluster Comput 2014;17(2):349–58.
[23] Apache, STORM. https://storm.apache.org/; 2015.
[24] Apache, Hive [Online]. http://hive.apache.org/; 2015.
[25] Apache, Pig [Online]. http://pig.apache.org/; 2015.

http://www.rfc.net/rfc2616%20.%20html/
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref9025
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref9025
http://qpid.apache.org/
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref9030
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref9030
http://activemq.apache.org/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
https://hadoop.apache.org/
https://github.com/Azure/connectthedots
https://studio.azureml.net/
http://wow.metof/
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref9035
http://refhub.elsevier.com/B978-0-12-805395-9.00015-0/ref9035
https://storm.apache.org/
http://hive.apache.org/
http://pig.apache.org/

299

CHAPTER

INTERNET OF VEHICLES
AND APPLICATIONS

W. Wu*, Z. Yang*, K. Li**
*Department of Computer Science, Sun Yat-sen University, Guangzhou, China;

**Department of Computer Science, State University of New York, NY, United States of America

16.1 BASICS OF IoV
16.1.1 BACKGROUND AND CONCEPT
The new era of the Internet of Things is driving the evolution of conventional vehicular ad-hoc networks
(VANETs) into the Internet of Vehicles (IoV). IoV refers to the real-time data interaction between ve-
hicles and roads, vehicles and vehicles, as well as vehicles and cities, using mobile-communication
technology, vehicle navigation systems, smart-terminal devices, and information platforms to enable
information exchange/interaction and a driving–instruction–controlling network system.

IoV enables the gathering and sharing of information regarding vehicles, roads, and their surround-
ings. Moreover, it features the processing, computing, sharing, and secure release of information onto
information platforms, including Internet systems. Based on such information, information platforms
can effectively guide and supervise vehicles, and provide abundant multimedia and mobile Internet
application services. IoV is an integrated network for supporting intelligent traffic management, intel-
ligent dynamic information services, and intelligent vehicle control, representing a typical application
of IoT technology in intelligent transportation systems (ITS).

The concept of IoV has been recognized by more and more people in recent years, and it is currently
in a stage of evolving from concept to reality. ITS in Europe and Japan have adopted certain forms of
IoV technology. In New Delhi, all 55,000 licensed rickshaws have been fitted with GPS devices so that
drivers can be held accountable for their questionable route selection. China’s Ministry of Transport
had ordered that GPS systems be installed and connected on all long-haul buses and hazmat vehicles
by the end of 2011, to ensure good driving habits and reduce the risk of accidents and traffic jams. The
Brazilian government has set a goal for all cars in circulation to be fitted with electronic ID chips from
its National Automated Vehicle Identification System (Siniav).

IoV is a complex integrated network system, which connects different people within vehicles, dif-
ferent vehicles, and different environmental entities within cities. With the rapid development of com-
putation and communications technologies, IoV promises huge commercial interest and research value.

16.1.2 NETWORK ARCHITECTURE
IoV consists of complex and heterogeneous wireless-network components. A general network archi-
tecture is shown in Fig. 16.1. From the viewpoint of system, IoV consists of three layers: vehicles,
connections, and servers/clouds.

16

300 CHAPTER 16 INTERNET OF VEHICLES AND APPLICATIONS

16.1.2.1 Vehicles in IoV
Vehicles in IoV are smart-vehicles with complex intravehicle systems. In particular, there are various
sensors to collect vehicle and driving status, and communication devices to communicate with other
vehicles and/or the Internet. Of course, an embedded software platform (also known as a vehicular
operating system) is necessary to process status information and control all devices.

More and more efforts are being made on research and development of vehicle intelligence. Almost
all major vehicle manufacturers have started their intelligent-vehicle projects, including Toyota, Ford,
GM, BMW, Volvo, etc. Also, major IT corporations such as Google, Apple, Baidu, and Huawei are
working on intelligent-vehicle systems. Quite a number of vehicles running on the highway have been
equipped with intelligent systems, although the functionalities related to IoV are still very simple.

In IoV, vehicles play a dual role: they are clients to consume the service from the Internet and at the
same time they are peers to perform distributed computing. Obviously, IoV is a hybrid system with both
peer-2-peer and client–server computing paradigms. With a peer-2-peer paradigm, vehicles can cooper-
ate and collaborate with each other to realize distributed-computing functionalities, such as file sharing
and cooperative driving. With the client–server paradigm, vehicles can use the resources at servers from
the Internet. A server can be either an ordinary computing node or a cloud data center. With servers,
IoV can conduct many more complex applications and tasks.

16.1.2.2 Connections in IoV
From the view of communications, IoV consists of two different types of wireless connections. Vehicle-
to-Vehicle (V2V) communication is used to exchange information among vehicles directly. Wireless
links of V2V connect vehicles in an ad-hoc way and construct VANETs. The recently defined standard
IEEE 802.11p for intervehicular communication, designed according to the specific requirements of

FIGURE 16.1 The Network Architecture of IoV

30116.2 CHARACTERISTICS AND CHALLENGES

V2V interaction, constitutes an essential step toward this next phase. However, V2V communication is
subject to major network effects. The second type of connection is Vehicle-to-Road (V2R), also called
Vehicle-to-Infrastructure (V2I). V2R refers to the information exchange between vehicles, and to the
roadside infrastructure equipped with wireless communication technology, such as traffic lights or
warning signs for roadwork. Unlike V2V, V2R can reach long distances and achieve high scalability.
V2R facilitates the interaction of vehicles and roadside units to enhance the aforementioned applica-
tion scenarios. Moreover, those units may be used as additional hops to augment the reach, and thus the
overall value, of intervehicular communication.

With V2V and V2R communications, IoV can realize information exchange among vehicles, road-
side infrastructure, and also the Internet. Then, various applications can be supported by IoV, including
ITS and Internet services.

16.1.2.3 Servers/Clouds in IoV
Servers or cloud data centers may provide various services to vehicles. Servers have powerful comput-
ing resources, storage resources, and also more information/data outside of vehicles, so advanced or
complex IoV applications must involve servers at the Internet.

Besides traditional servers, cloud-computing based on data centers are becoming more and more
popular. In cloud data centers, various computing and communication resources, including CPU cycles,
memory, storage, and even network bandwidth, can all be scheduled and consumed in a flexible and on-
demand way. Resources allocated to a specific user can be scaled automatically, according to workload
levels. Such a new computing paradigm can significantly improve capacity/efficiency, and at the same
time reduce the cost of IoT information processing. For example, driving-status data can be collected
from vehicles and sent to cloud data centers for congestion analysis. During rush hour there are many
vehicles on the road; therefore more data may be collected, and then more computing resources may be
allocated to conduct the processing. Then, at midnight, the computing resource for congestion analysis
may be released automatically by the cloud management system.

16.2 CHARACTERISTICS AND CHALLENGES
16.2.1 CHARACTERISTICS OF IoV
Vehicular networks are mainly composed of vehicle nodes, which behave quite differently from other
wireless nodes. Therefore, a vehicular network has several characteristics that may affect the design of
IoV technologies. Some of the characteristics will bring challenges to IoV technological development,
whereas some others may bring benefit.

1. Highly dynamic topology: Compared to common mobile nodes, vehicles may move at quite a
high speed. This causes the topology of a vehicular network to change frequently. Such high
dynamicity in network topology must be carefully considered in IoV development.

2. Variable network density: The network density in IoV varies, depending on the traffic density,
which can be very high in the case of a traffic jam, or very low, as in suburban traffic. At either
extreme the network may frequently disconnect.

3. Large-scale network: The network scale could be large in dense, urban areas, such as city centers,
highways, and at entrances to big cities.

4. Geographical communication: Compared to other networks that use unicast or multicast where
the communication endpoints are defined by ID or group ID, the vehicular networks often have

302 CHAPTER 16 INTERNET OF VEHICLES AND APPLICATIONS

a new type of communication, which addresses the geographical areas where packets need to be
forwarded (eg, in safe-driving applications).

5. Predictable mobility: Vehicular networks differ from other types of mobile ad-hoc networks in
which nodes move in a random way. Vehicles, on the other hand, are constrained by road topology
and layout, by the requirement to obey road signs and traffic lights, and by responding to other
moving vehicles, leading to predictability in terms of their mobility.

6. Sufficient energy and storage: A common characteristic of nodes in vehicular networks is that
nodes have ample energy and computing power (including both storage and processing), since
nodes are cars instead of small handheld devices.

7. Various communication environments. Vehicular networks are usually operated in two typical
communication environments. In highway traffic scenarios, the environment is relatively simple
and straightforward (eg, constrained one-dimensional movement), whereas in city conditions it
becomes much more complex. The streets in a city are often separated by buildings, trees, and
other obstacles; therefore, there is not always a direct line of communication in the direction of
intended data communication.

16.2.2 CHALLENGES IN IoV
The objective of IoV is to integrate multiple users, multiple vehicles, multiple things, and multiple
networks, to always provide the best connected communication capability that is manageable, control-
lable, operational, and credible. It composes a truly complex system. Moreover, the applications of IoV
are quite different from those of other networks, and, consequently, many special requirements arise.
Both of these two aspects bring new technical challenges to IoV research and development.

1. Poor network connectivity and stability: Due to the high mobility and rapid changes of topology,
which lead to frequent network disconnections and link failures, message loss should be common.
Then, how to elongate the life of communication links is always challenging.

2. Hard delay constraints: Many IoV applications have hard delay constraints, although they may
not require a high data rate or bandwidth. For example, in an automatic highway system, when
a brake event happens, the message should be transferred and arrive in a certain time to avoid
a car crash. In this kind of application, instead of an average delay, a minimal delay would be
crucial.

3. High reliability requirements: Transportation and driving-related applications are usually safety-
sensitive. Obviously, such an application requirement is high reliability. However, due to complex
network architecture, large network scale, and poor stability of network topology, achieving high
reliability in IoV is far from trivial. A special design should be conducted in various layers, from
networking protocols to applications.

4. High scalability requirements: High scalability is another big challenge in IoV. As mentioned
before, IoV is usually very large in terms of node number and deployment territory. Such a large
scale certainly requires high scalability in IoV technology.

5. Security and privacy: Keeping a reasonable balance between the security and privacy is one of the
main challenges in IoV. The receipt of trustworthy information from its source is important for the
receiver. However, this trusted information can violate the privacy needs of the sender.

6. Service sustainability: Assuring the sustainability of service providing in IoV is still a challenging
task, calling for high intelligence methods, as well as a user-friendly network-mechanism design.
There are challenges in adjusting all vehicles to provide sustainable services over heterogeneous

30316.3 ENABLING TECHNOLOGIES

networks in real-time, as they are subject to limited network bandwidth, mixed wireless access,
lower service platforms, and a complex city environment.

16.3 ENABLING TECHNOLOGIES
IoV is a large-scale and complex system with heterogeneous network components and diverse appli-
cations. Therefore, various technologies, especially networking technologies, are necessary to make
IoV applications workable. In the following, we introduce these enabling technologies according to
network layers: MAC layer and routing layer. In the routing layer, we introduce both unicast-oriented
routing protocols and broadcast-based dissemination algorithms. Of course, broadcast-based informa-
tion dissemination can also be viewed as application-layer protocols. In any respect, this does not affect
the understanding of these algorithms.

16.3.1 MAC PROTOCOLS AND STANDARDS
There is quite a lot of research on designing special MAC protocols for IoV, or more precisely, on
VANETs. Almost all VANET MAC protocols are based on the basic wireless-communication standard
IEEE 802.11. Therefore, we introduce IEEE 802.11 first, and then discuss the extension to its variants
for VANETs.

16.3.1.1 IEEE 802.11
According to the IEEE’s technical paper, a wireless LAN (WLAN or WiFi) is a data transmission
system designed to provide location-independent network access between computing devices by using
radio waves rather than a cable infrastructure.

The IEEE LAN committee raised a series of Wireless Local Area Network (WLAN) standards.
Collectively, these wireless standards are identified as the 802.11 standard [1]. Initially, this specifica-
tion was ratified by IEEE in 1997. Subsequently, various amendments have been made to the 802.11
standard, as shown in Table 16.1.

Table 16.1 IEEE 802.11 Standards

Protocol
Release
Date

Frequency
(GHz) Maximum Data Rate Modulation

Approximate Range

Indoor (m) Outdoor (m)

801.11 1997 2.4 2 Mbit/s DSSS/FHSS 20 100

802.11a 1999 5 54 Mbit/s OFDM 35 120

802.11b 1999 2.4 11 Mbit/s DSSS 35 140

802.11g 2003 2.4 54 Mbit/s OFDM/DSSS 38 140

802.11n 2009 2.4/5 600 Mbit/s (40 MHz, 4 MIMO) OFDM 70 250

802.11ac 2011 5 867 Mbps, 1.73 Gbps,
3.47 Gbps, 6.93 Gbps (160 MHz,
8 MIMO)

OFDM 35

802.11ad 2012 60 Up to 6912 Mbit/s SC/OFDM 60 100

304 CHAPTER 16 INTERNET OF VEHICLES AND APPLICATIONS

As shown in Fig. 16.2, an IEEE 802.11 network consists of two types of entities: mobile station
(STA) and access point (AP). AP refers to the device integrated into the wireless LAN and the dis-
tribution system. STA refers to the client terminal, with access mechanisms to the wireless medium
and radio contact to the AP. There may be also a “portal,” which bridges a WLAN to other (wired)
networks. A Basic Service Set (BSS) is the basic building functional-block of an IEEE 802.11
LAN, which consists of an AP and a set of STAs. Multiple BSSs may be connected into one LAN
to extend the coverage to a large area; such a set of BSSs is called Extended Service Set (ESS). An
IBSS is a special type of IEEE 802.11 LAN, where wireless clients can connect with each other via
point-to-point mode.

IEEE 802.11’s frequency band is either the 2.4-GHz (specifically, 2.4000–2.4835 GHz) or the
5.0-GHz (specifically, 5.150–5.825 GHz) spectrum bands. The 2.4-GHz band supports a total of
14 channels, although the FCC limits this to 11 channels in the US. The 5-GHz band is regulated and
thus generally free of interference. However, signals at this frequency suffer from poor range and are
easily obstructed by intermediary objects. The less-often-used 5-GHz band supports up to 12 nonover-
lapping channels (in the US), and is further separated into 3 sub-bands (with 4 channels each).

16.3.1.2 IEEE 802.11p/WAVE
Vehicular networks have attracted more and more attention, without a doubt, as the number of vehicles
on the road grows so quickly. Therefore, several working groups have been set up to make the commu-
nication protocols, such as the IEEE 1609 working group and the IEEE 802.11p task group.

IEEE 802.11p is known as an amendment to the IEEE Std 802.11 for wireless access in vehicular
environments. Because of the high mobility of vehicles, the original protocols in IEEE Std 802.11 are
no longer suitable to this environment. To address this issue, the IEEE working group has come up with

FIGURE 16.2 The Network Architecture of IEEE 802.11

30516.3 ENABLING TECHNOLOGIES

a protocol stack known as IEEE 802.11p Wireless Access in Vehicular Environment (WAVE) [2] to
handle the problem of a reliable connection.

WAVE extends the ASTM Standard E2213-03 (known as DSRC) to operate in a rapidly varying
environment, and to exchange messages without joining a BSS. It uses the Enhanced Distributed Chan-
nel Access (EDCA) MAC sublayer protocol design, based on that of the IEEE 802.11e, with some
modifications, whereas the physical layer is OFDM (Orthogonal Frequency Division Modulation), as
used in IEEE 802.11a. In addition, it defines the signaling techniques and interface functions used by
stations communicating outside of the context of a BSS that are controlled by the IEEE 802.11MAC.

Fig. 16.3 shows the channel allocation in IEEE 802.11p. The 75-MHz band is divided into one
Control Channel (CCH) and six Service Channels (SCHs). Two small- and two medium-zone service
channels are designated for extended data transfer. Two service channels are designated for special
safety-critical applications. Public safety applications and messages have priority in all channels. First,
RSU announces to OBUs 10 times per s the applications it supports and on which particular channels.
OBU listens on Channel 172, then authenticates the RSU digital signature. OBU should execute safety
apps first, and then switch channels, and then, in turn, should execute nonsafety apps. At last OBU
returns to Channel 172 and listens to the channel again.

On top of IEEE 802.11p, IEEE 1609 defines an architecture and a complementary, standardized set
of services and interfaces for vehicle-related wireless communication [3]. It provides foundations for
a broad range of applications in the transportation environment, such as vehicle safety, automated toll-
ing, enhanced navigation, and traffic management. The architecture of IEEE 1609 protocols is shown
in Fig. 16.4.

IEEE 1609.0 describes the WAVE architecture and services necessary for multichannel DSRC/
WAVE devices to communicate in a mobile vehicular environment. IEEE 1609.1 describes key com-
ponents of WAVE system architecture, and defines data flows and resources. It also defines command-
message formats and data-storage formats, and specifies the types of devices that may by supported
by OBU. IEEE 1609.2 collects the security-processing requirements necessary for WAVE system

FIGURE 16.3 Channel Allocation in WAVE

306 CHAPTER 16 INTERNET OF VEHICLES AND APPLICATIONS

operation. IEEE 1609.3 specifies network and transport layer services, including addressing and rout-
ing, in support of secure WAVE data exchange. It also defines Wave Short Messages, providing an
efficient WAVE-specific alternative to IPv6 (Internet Protocol version 6) that can be directly supported
by applications [3]. IEEE 1609.4 specifies MAC sublayer functions and services for supporting mul-
tichannel wireless connectivity between WAVE devices. It controls the operation of upper-layer data
transfers across multiple channels without requiring knowledge of PHY parameters, and it also de-
scribes multichannel-operation channel-routing and switching for different scenarios. IEEE 1609.11
defines the services and secure message-formats necessary for supporting secure electronic payments.
IEEE 1609.12 indicates identifier values that have been allocated for use by WAVE systems.

Besides the standard protocols, researchers have also conducted a study to extend and improve the
performance of MAC protocols. Based on the latest standard draft of IEEE 802.11p and IEEE 1609.4,
Wang et al. [4] proposed a variable CCH interval (VCI) multichannel medium access control (MAC)
scheme, which can dynamically adjust the length ratio between CCH and SCHs. The scheme also in-
troduces a multichannel coordination mechanism to provide contention-free access of SCHs. Markov
modeling is conducted to optimize the intervals based on the traffic condition. Dang et al. [5] proposed
a new multichannel MAC for VANETs, named HER-MAC, which supports both TDMA and CSMA
multiple-access schemes. The HER-MAC allows vehicle nodes to send safety messages without colli-
sion on the CCH, within their reserved time-slots, and to utilize the SCH resources during the control
channel interval (CCHI) for the nonsafety message transmissions.

16.3.2 ROUTING PROTOCOLS
Routing protocol is the network-layer protocol to provide end-to-end message delivery service. Al-
though many IoV applications are executed in a broadcasting way, there are still applications requiring
unicast-oriented multihop communications. Unfortunately, to the best of our knowledge, there is still
no specific routing protocol for IoV proposed. Therefore, routing protocols for common MANETs have
to be used if unicast of messages is necessary.

Routing for MANETs has always been a hot topic, and many protocols have been proposed, includ-
ing DSR and DSDV. Among others, AODV and OLSR are the most popular and widely accepted. Also,
IEEE 802.11s provides a multihop forwarding mechanism for 802.11, and can also be used for message
routing in unicast.

FIGURE 16.4 IEEE 1609 Standard Family

30716.3 ENABLING TECHNOLOGIES

16.3.2.1 AODV
Ad hoc On-Demand Distance Vector (AODV) routing [6] is a routing protocol for mobile or other
wireless ad hoc networks. It uses an on-demand approach for finding routes. The source node and the
intermediate nodes store the next-hop information corresponding to each flow for data-packet trans-
mission. The source-node floods the RouteRequest packet in the network when a route is not available
for the desired destination. When an intermediate node receives a RouteRequest, it either forwards
the packet or prepares a RouteReply if it has a valid route to the destination. AODV uses a destination
sequence number (DestSeqNum) to determine an up-to-date path to the destination. A node updates its
path information only if the DestSeqNum of the current packet received is greater than or equal to the
last DestSeqNum stored at the node with smaller hop count.

16.3.2.2 OLSR
The Optimized Link State Routing Protocol (OLSR) [7] is a proactive link-state routing protocol,
which uses hello and topology control (TC) messages to discover and then disseminate link-state in-
formation throughout the ad hoc network. Individual nodes use this topology information to compute
next-hop destinations for all nodes in the network, using the shortest hop-forwarding paths.

The OLSR protocol uses a link-state algorithm to proactively determine the most efficient path between
nodes. The key point of OLSR lies in the dynamic Multi-Point Relay (MPR) technique, which selects only
a subset of neighboring nodes to relay data instead of every node acting as a relay. MPRs are elected in such
a way that every node can communicate with an MPR within one hop. The localized network information
is shared among MPRs to maintain network-wide routing paths. This allows every MPR to have a com-
plete routing table while simultaneously minimizing the number of topology-control messages.

16.3.2.3 Multihop-MAC Protocol (IEEE 802.11s)
IEEE 802.11s is an IEEE 802.11 amendment for mesh networking, defining how wireless devices can
interconnect to create a WLAN mesh network, which may be used for static topologies and ad hoc
networks. IEEE 802.11s supports both broadcast/multicast and unicast delivery, using “radio-aware
metrics over self-configuring multi-hop topologies.” An 802.11s mesh-network device is labeled as
Mesh Station (mesh STA). Mesh STAs form mesh links with one another, over which mesh paths can
be established using a routing protocol. 802.11s defines a default mandatory routing-protocol (Hybrid
Wireless Mesh Protocol, or HWMP), yet allows vendors to operate using alternate protocols. HWMP
is a combination of AODV and tree-based routing.

16.3.3 BROADCASTING AND INFORMATION DISSEMINATION
Information dissemination is the transportation of information to the intended recipients while satisfy-
ing certain requirements such as delay, reliability, and so forth. These requirements vary, depending
upon the information being disseminated. The main issue for information dissemination is that a simple
query or on-demand methodology for disseminating information does not suit VANETs, due to their
high mobility and network partitions. According to different dissemination schemes, information dis-
semination algorithms can be classified into three types, as follows.

16.3.3.1 V2V Based
In these algorithms, information is disseminated among vehicles via V2V connections. Yan et al. [8]
focused on the problem that a sender needs to disseminate information to M recipients and collect

308 CHAPTER 16 INTERNET OF VEHICLES AND APPLICATIONS

M receipts in an interested area consisting of k roads, which is solved by a processor scheduling scheme.
In [9], the dissemination protocol is based on the probability that a vehicle will meet an event. TIGeR
[10] is a traffic-aware intersection-based geographical routing protocol, where only nodes at intersec-
tions make routing decision based on vehicular traffic information of different roads and the road’s
angle with respect to the destination. VITP [11] is designed to provide car drivers with time-sensitive
information about traffic conditions and roadside facilities.

As in other wireless networks, clustering has been used to reduce communications cost in vehicular
networks. Chu et al. [12] designed a cluster based overlay solution, which creates a mobility-adaptive
cluster to represent local traffic information and selects the optimal relay node of the intercluster for-
warding pair to increase the efficiency. DPP [13] controls message propagation direction by using
limited-range packet radios and attribute-based routing. Chen et al. [14] proposed to make use of navi-
gation route for connected dominating set (CDS) construction. CDS is a popular approach for infor-
mation dissemination in ad hoc networks. The algorithm in [14] tries to construct stable CDS so as to
reduce CDS maintenance overhead and message forwarding cost.

16.3.3.2 V2R Based
In these algorithms, roadside infrastructure is involved in information dissemination. In [15], based on
the orthogonality of the encoded sets of rateless codes, portions of the information can be disseminated.
even if this has not yet been decoded. Kone et al. [16] used measurements of a fleet of WiFi-enabled
vehicles to design an information- dissemination mechanism that scales with device density. Khabbaz
[17] proposed a multiserver queuing model to accurately calculate the dynamics of vehicular networks.
SADV [18] includes static nodes at intersections, to store packets and transmit them when the optimal
delivery path becomes available.

16.3.3.3 DTN Based
The previous V2V or V2R algorithms usually rely on continuous network connectivity. However, high
mobility of vehicles may result in frequent network partitions. Delay/Disruption Tolerant Network
(DTN) is the technique to handle such a challenge, by routing packets in “store and forward” mode
[19], where data is incrementally moved and stored throughout the network, in the hope that it will
eventually reach its destination. The key point of DTN lies in how to maximize the probability of a
message being successfully transferred.

Baccelli et al. [20] analyzed the effect of vehicle density on information propagation speed, and
proved that, beneath a certain threshold, information propagates on average at vehicle speed, whereas
above this threshold, information propagates dramatically faster, at a speed that increases quasi-expo-
nentially when the vehicle density increases. Interestingly, Agarwal et al. [21] also derived both upper
and lower bounds on the average message-propagation speed against traffic density, by exploiting a
connection to the classical pattern-matching problem in probability theory.

16.4 APPLICATIONS
The applications of IoV are quite diverse. According to functionalities, we categorize them into three
major classes. A detailed taxonomy is shown in Fig. 16.5.

30916.4 APPLICATIONS

16.4.1 DRIVING SAFETY RELATED
Driving safety related applications mainly refer to cooperative collision avoidance systems (CCAS)
[22], which extend the collisions avoidance system (CAS) by sharing CAS information among neigh-
boring vehicles, usually via V2V communication [23,24].

CAS, also known as precrash system, forward collision warning system, or collision mitigating
system, uses radar or other sensors (eg, laser and camera) to detect an imminent crash, and then pro-
vides a warning to the driver or takes braking/steering action directly. CCAS adopts cooperation among
vehicles to mitigate collisions among multiple vehicles, as shown in Fig. 16.6.

CarTALK 2000 [25] is a quite early work that involves CCAS. Techniques and algorithms were
developed to test and assess cooperative driver-assistance applications, including CCAS function. Yang
et al. [26] defined special congestion-control policies and redundant detection mechanisms for emer-
gency warning messages, so as to achieve low delay and low communication cost. Taleb et al. [27]
designed a risk-aware MAC protocol for CCAS, where the medium access delay of each vehicle is set
as a function of its emergency level, and vehicles in high emergency situations can disseminate warning
messages with shorter delay, so as to minimize chain collisions.

Milanés et al. [28] proposed a V2R-based vehicle control system. A fuzzy-based control algorithm
is in charge of determining each vehicle’s safe and comfortable distance to avoid collision. Maruoka
et al. [29] focused on collision judgment. The authors proposed a judgment algorithm based on esti-
mated relative positions and potential-collision- indicated areas, which can reduce false warnings and
unnecessary warnings.

FIGURE 16.5 A Taxonomy of IoT Applications

FIGURE 16.6 Cooperative Collision Avoidance System

310 CHAPTER 16 INTERNET OF VEHICLES AND APPLICATIONS

16.4.2 TRANSPORTATION EFFICIENCY RELATED
Efficiency is one of the major concerns of transportation management. Vehicular network technology
brings new possibilities of efficiency improvement. As shown in Fig. 16.6, existing transportation-
efficiency-related applications can be further classified into four categories: intersection control, route
navigation, parking navigation, and cooperative driving.

16.4.2.1 Intersection Control
Traffic control at intersections has been always a key issue for ITS. The key point is how to schedule
traffic signals efficiently, according to traffic volume information, so as to reduce waiting time and
improve fairness. There have been many algorithms or systems proposed for intelligent intersection
control, which can be categorized as in Fig. 16.7.

Most existing work on intersection control is traffic-light based, and the key issue is to determine
a good signal-scheduling plan. In early work, road detectors have been used to collect traffic volume
information, and the traffic-signal plan constantly changes to adapt to the varying traffic conditions.
Systems such as SCOOT [30] and SCATS [31] have been deployed for many years.

Traffic-light scheduling based on vehicular networks is the new stage of intelligent intersection
control. Detailed vehicle information, including ID, speed, and position, are collected via V2V or V2I
communication. Then, more accurate and efficient scheduling can be achieved.

V2I-based traffic-light scheduling is widely studied. In [32,33], a controller node is placed at the
intersection to collect queue-length information and computer proper-cycle time of the traffic signal
via the Webster formula. In addition to queue-length information, priority of vehicles is considered in
[34], and a traffic signal is scheduled with quality-of-service provisioning. In some other work, signal
scheduling is modeled as a combinatorial optimization problem to find an optimal scheduling plan of
traffic signal. To solve such a problem, various methods such as dynamic programming (DP) [35,36],
branch-and-bound [37], and linear programming [38] have been applied. Some researchers introduce
intelligent algorithms to traffic-light scheduling, including fuzzy-logic-based scheduling [39], and
Q-learning-based scheduling [40,41].

V2V-based adaptive traffic-light control is presented in [42]. This system reduces communication
cost by clustering vehicles approaching the intersection. The density of vehicles within the cluster is
computed using a clustering algorithm and sent to the traffic-signal controls to set the timing cycle.

FIGURE 16.7 A Taxonomy of Intelligent Intersection Control Algorithms

31116.4 APPLICATIONS

There are also intersection-control approaches without using traffic lights. In maneuver- manipu-
lation-based algorithms [28,43–45], the driving behaviors of vehicles are completely controlled by the
intersection controller, which calculates the optimal trajectory for each vehicle, so that vehicles can
safely pass through the intersection without colliding with each other. Since the speed and position of
each vehicle needs to be accurately calculated, the optimization is very complex, especially when the
number of vehicles is large.

In vehicle-scheduling algorithms, there is also no traffic light involved, but unlike maneuver-based
ones, these algorithms schedule only the permissions to pass intersections rather than the driving be-
haviors. Dresner et al. [46,47] proposed a reservation-based intersection control system, where ve-
hicles interact with an intersection controller through wireless communication to get reservations for
passing. According to the traffic condition and current reservations, the intersection controller decides
whether to accept a new reservation request or not. Wu et al. [48] adopted the distributed mutual-ex-
clusion approach to realize vehicle scheduling without traffic lights used. Ferreira et al. [49] proposed
the notion of a “virtual traffic light,” where some vehicle is elected as the traffic-light node via V2V
communications.

16.4.2.2 Route Navigation
Vehicular network-based navigation is studied to avoid the drawbacks of GPS-based or similar naviga-
tions. Chen et al. [50] proposed to construct a navigation route that considered real-time traffic infor-
mation and fuel consumption.

Collins et al. [51] proposed a route-selection algorithm that can cope with traffic congestion by op-
timizing road utility. VSPN [52] is a privacy-preserving navigation scheme that utilizes speed data and
road conditions collected by RSUs to guide vehicles. Leontiadis et al. [53] designed a system based on
crowd-sourcing traffic information in an ad hoc manner.

16.4.2.3 Parking Navigation
Finding an available parking space in an urban environment with the help of vehicular networks is also
an interesting problem. Verroios et al. [54] formulated the problem as a Time-Varying Traveling Sales-
man problem, and proposed an approach for computing the route that a vehicle must traverse in order
to visit all parking spaces known to be available.

Lu et al. [55] designed a conditional privacy-preservation mechanism in a smart-parking scheme. In
[56], atomic information, aggregated information, and an overlay grid are used to discover free parking
places.

16.4.2.4 Cooperative Driving
Cooperative driving technology is used to coordinate a queue of vehicles to make them drive as one
vehicle; it obviously improves the energy efficiency.

Gehring et al. [57] proposed practical results of a longitudinal control for truck platooning. Based
on distance measurement between vehicles, a robust platoon controller is designed based on sliding-
mode control. Seiler et al. [58] examined how the disturbance to error gain for an entire platoon scales
with the number of vehicles. Cooperative driving at blind crossings is studied in [59]. A concept of
safety-driving patterns is proposed to represent the collision-free movements of vehicles at crossings.
In [60], a leaderless approach is proposed, based on a model of interacting agents with bidirectional and
unidirectional, time-dependent communication.

312 CHAPTER 16 INTERNET OF VEHICLES AND APPLICATIONS

16.4.3 INFOTAINMENT SERVICES
Infotainment services include mainly Internet access services and file sharing among vehicles, espe-
cially video sharing. Fig. 16.8 shows an example of video sharing.

Vehicle-to-Internet communication is a challenging task. A QoS framework to ensure data forward-
ing to the Internet in a gateway-free area in a highway scenario is proposed in [61]. It consists of a
proxy-based Vehicle-to-Internet protocol, with a prediction-based routing algorithm and IEEE 802.l1p
EDCA scheme.

Video streaming over VANET has attracted more and more attention. Asefi et al. [62] introduced
a quality-driven scheme for seamless delivery of video packets in urban VANET scenarios, which in-
cludes routing and mobility-management mechanisms based on Mobile IPv6. Xing et al. [63] proposed
an adaptive video-streaming scheme for video- streaming services in the highway scenario. Relying
on cooperative relay among vehicles, a vehicle can download video data using either a direct link or a
multihop path to the RSUs. The proposed scheme can request an appropriate number of video-enhance-
ment layers to improve video quality-of-experience.

Razzaq et al. [64] proposed a robust scheme for SVC-based streaming over an urban VANET with
path diversity and network coding. The scheme calculates the quality of all candidate paths based on
gray relational analysis and then assigns paths to different layers according to their importance. Nearby
nodes along the transmission path may recode their received packets and store them in buffers for re-
covering lost packets.

Guo et al. [65] proposed a V2V live video streaming named V3, which addresses the challenges of
V2V video streaming by incorporating a novel signaling mechanism to continuously trigger vehicles
into video sources. It also adopts a store-carry-and-forward approach to transmit video data in parti-
tioned network environments.

Lee et al. [66] proposed a mechanism called Cooperative Video Streaming over Vehicular Networks
(CVS-VN). It adopts a new video codec called Co-SVC-MDC, which divides the multimedia stream
into several descriptions. The requester can get the basic QoS for multimedia display via the requester’s

FIGURE 16.8 An Example of Video Services

31316.5 SUMMARY AND FUTURE DIRECTIONS

3G/3.5G network channel. Other low-priority descriptions are scheduled to be transmitted via helpers’
3G/3.5G network channels.

Seferoglu et al. [67] proposed video schemes for network code selection and packet scheduling
by considering the importance-deadlines of video packets, the network state, and packets received
in the neighborhood. Xie et al. [68] studied the performance of video streaming under different data-
forwarding and buffer-management schemes, in highway environments without frequent link discon-
nections and persistent network partitions.

16.5 SUMMARY AND FUTURE DIRECTIONS
IoV is an evolution of VANETs and an extension of the Internet. As an important part of IoT, IoV in-
volves several different research fields, including wireless communication/networking, mobile comput-
ing, cloud computing, intelligent transportation, and even autopilot vehicles.

Networking technologies are the basis of IoV. There have been many efforts on the study and stan-
dardization of communication protocols for IoV, especially for the VANET part. IEEE 802.11p and its
related protocol family should be the future of IoV communication protocols. On the level of routing
and data dissemination, both broadcast-based paradigms and point-to-point paradigms are necessary,
and they are suitable for quite different applications.

Applications are the driving power of IoV. IoV applications are quite diverse, including driving
safety and efficiency service, intelligent traffic management, and informative services. Some applica-
tions, for example, traffic-light scheduling, have emerged prior to IoV, but IoV will certainly bring
revolutionary changes in both technology and functionality. Other applications are totally new: for
example, cooperative driving is not possible without vehicular communications. Many applications
have been proposed and some have been deployed. Of course, more and more applications will emerge
in the future.

Of course, IoV is still in its initial stage, and there are many technical problems to be addressed
before IoV can be widely accepted and deployed. Among others, the following directions should be
worthy of further study in the future.

1. Efficient information routing and dissemination
 Although a specialized MAC protocol family has been developed for IoV, especially VANETs,

multihop communications in IoV are still a hard task. High mobility and weak connection make
information forwarding and dissemination far from trivial. Researchers are putting more and
more efforts toward this topic; it lags far behind MAC layer technology. More precisely, how to
route messages at network level with a mechanism suitable for vehicular environments is a very
interesting topic. This includes both broadcast-based information dissemination and unicast-based
message delivery. Widely accepted routing or dissemination protocol does not appear yet.

2. Communications based on Software-Defined Networking (SDN)
 There has been some work on software-defined vehicular networks. However, it is far from

enough. SDN is naturally suitable for the IoV environment, because vehicles are forwarders, and
at the same time, computing nodes. Realizing an SDN paradigm is easy, but the difficulty lies in
suitable link-control and allocation algorithms. Different from wired WAN environments, or even
traditional ad hoc networks, vehicular links are more dynamic, so how to control and allocate

314 CHAPTER 16 INTERNET OF VEHICLES AND APPLICATIONS

such resources is very challenging. Underlying technical issues include: vehicular-link modeling
and representing, allocation of dynamically changing link-resources via network controller,
forwarding-rule delivery and management, etc.

3. Communications based on Named Data Networking (NDN)
 Similar to SDN, NDN is another promising networking technology for the future Internet. It is

even more revolutionary in terms of a routing mechanism. Applications of IoV usually involve
transportation information, which is naturally propagated to nonpredefined vehicles according
to their content. Such a characteristic makes NDN a very suitable technology for IoV. However,
NDN in IoV is not studied widely and there are many open problems to be considered. Possible
directions include: transportation data-naming and organizing, design of data request and
forwarding table for vehicle nodes, message caching at vehicles, application-specific NDN
algorithms, etc.

4. Generic coordination mechanisms
 IoV is network based and all applications may involve coordination among vehicles.

Synchronization and agreement are used in distributed applications, such as cooperative driving
and cooperative intersection-control. Current distributed coordination is usually embedded into
application logic. Such design is not good in terms of protocol/algorithm design. Decoupling
coordination and application, and realizing modularized design should be good choices.
Therefore, generic coordination algorithms—even a middleware platform—would be very
interesting.

5. Traffic-data processing
 Besides node coordination, traffic-data processing should be another topic that may arise generic

techniques or platforms in the middleware level. With more and more vehicles equipped with
intelligent devices, and also more and more roadside units deployed, vehicular data will increase
in an explosive way, as in other fields of IoT. On the one hand, Big Traffic Data provides more
knowledge for IoV and may help improve the performance of IoV applications, or even give
rise to new ones. On the other hand, traffic-data processing itself raises new challenges. Besides
general Big Data techniques, IoV-specific data-processing techniques should be considered.
Especially, cloud-based traffic-data processing is of special interest.

6. New applications
 New applications of IoV are always desirable. With fast development of enabling technologies

and user requirements, many new IoV applications will emerge. Although such applications are
still in the categories of driving safety and efficiency, or traffic management and informative
services, they may provide new service functionalities with the help of more efficient networking,
cloud computing, and Big Data processing techniques. Possible new applications may include an
intelligent traffic status-report service, real-time navigation service, intervehicle entertainment
application, etc.

REFERENCES
 [1] IEEE 802.11 wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE-

SA; 2012. doi:10.1109/IEEESTD 2012.6178212.
 [2] Part 11 wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment

6 wireless access in vehicular environments. IEEE 802.11p-2010.

315REFERENCES

 [3] IEEE 1609 family of standards for wireless access in vehicular environments (WAVE). U.S. department of
transportation; 2013. https://www.standards.its.dot.gov/factsheets/factsheet/80

 [4] Wang Q, Leng S, Fu H, Zhang Y. An IEEE 802.11 p-based multichannel MAC scheme with channel
coordination for vehicular ad hoc networks. IEEE Trans Intell Transp Syst 2012;13(2):449–58.

 [5] Dang D, Dang H, Nguyen V, Htike Z, Hong C. HER-MAC: a hybrid efficient and reliable MAC for vehicular
ad hoc networks. In: IEEE twenty-eighth international conference on advanced information networking and
applications (AINA); 2014. p. 186–93.

 [6] Perkins C, Belding-Royer E, Das S. Ad hoc On-Demand Distance Vector (AODV) Routing, IETF, RFC 3561,
2003. http://www.ietf.org/rfc/rfc3561.txt.

 [7] Clausen T, Jacquet P. Optimized link state routing protocol (OLSR), IETF RFC 3626; 2003. http://www.ietf.
org/rfc/rfc3626.txt

 [8] Yan T, Zhang W, Wang G. DOVE: data dissemination to a desired number of receivers in VANET, vehicular
technology. IEEE Trans 2014;63(4):1903–16.

 [9] Cenerario N, Delot T, Ilarri S. A content-based dissemination protocol for VANETs: exploiting the encounter
probability, intelligent transportation systems. IEEE Trans 2011;12(3):771–82.

[10] Tavakoli R, Nabi M. TIGeR: a traffic-aware intersection-based geographical routing protocol for urban VANETs.
In: Proceedings of the IEEE seventy-seventh vehicular technology conference (VTC Spring); 2013. p. 1–5.

[11] Dikaiakos M, Florides A, Nadeem T, Iftode L. Location-aware services over vehicular ad-hoc networks using
car-to-car communication, selected areas in communications. IEEE J 2007;25(8):1590–602.

[12] Chu Y, Huang N. An efficient traffic information forwarding solution for vehicle safety communications on
highways, intelligent transportation systems. IEEE Trans 2012;13(2):631–43.

[13] Little T, Agarwal A. An information propagation scheme for VANETs. In: Proceedings of the intelligent
transportation systems. Austria; 2005. p. 155–60.

[14] Chen Y, Wu W, Cao H. Navigation route based stable connected dominating set for vehicular ad hoc networks.
Intl J Web Service Res (JWSR) 2015;12(1):12–26.

[15] Cataldi P, Tomatis A, Grilli G, Gerla MA. Novel data dissemination method for vehicular networks with
rateless codes. In: Proceedings of the wireless communications and networking conference WCNC, IEEE;
2009. p. 1–6.

[16] Kone V, Zheng H, Rowstron A, O’Shea G, Zhao BY. Measurement-based design of roadside content delivery
systems, mobile computing. IEEE Trans 2013;12(6):1160–73.

[17] Khabbaz M, Hasna M, Assi CM, Ghrayeb A. Modeling and analysis of an infrastructure service request queue
in multichannel V2I communications. IEEE Trans Intell Transp Syst 2014;15(3):1155–67.

[18] Ding Y, Xiao L. SADV. Static-node-assisted adaptive data dissemination in vehicular networks, vehicular
technology. IEEE Trans 2010;59(5):2445–55.

[19] Tornell SM, Calafate CT, Cano JC, Manzoni P. DTN protocols for vehicular networks: an application oriented
overview, communications surveys & tutorials. IEEE 2015;17(2):868–87.

[20] Baccelli E, Jacquet P, Mans B, Rodolakis G. Highway vehicular delay tolerant networks: information
propagation speed properties, information theory. IEEE Trans 2012;58(3):1743–56.

[21] Agarwal A, Starobinski D, Little TDC. Phase transition of message propagation speed in delay-tolerant
vehicular networks. IEEE Trans Intell Transp Syst 2012;13(1):249–63.

[22] Tan H, Huang J. DGPS-based vehicle-to-vehicle cooperative collision warning: engineering feasibility
viewpoints. IEEE Trans Intell Transp Syst 2006;7(4):415–28.

[23] Miller R, Huang Q. An adaptive peer-to-peer collision warning system. In: Proceedings of the vehicular
technology conference. Birmingham, UK; 2002, 1. p. 317–21.

[24] Biswas S, Tatchikou R, Dion F. Vehicle-to-vehicle wireless communication protocols for enhancing highway
traffic safety. Commun Mag 2006;44(1):74–82.

[25] Reichardt D, Miglietta M, Moretti L, Morsink P, Schulz W. CarTALK 2000: safe and comfortable driving
based upon inter-vehicle-communication. In: Proceedings of the intelligent vehicle symposium. Versailles,
France; 2002, 2: p. 545–50.

https://www.standards.its.dot.gov/factsheets/factsheet/80
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0010
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0075

316 CHAPTER 16 INTERNET OF VEHICLES AND APPLICATIONS

[26] Yang X, Liu J, Vaidya N, Zhao F. A vehicle-to-vehicle communication protocol for cooperative collision
warning. In: Proceedings of the mobile and ubiquitous systems: networking and services. Boston, America;
2004: p. 114–23.

[27] Taleb T, Benslimane A, Ben L. Toward an effective risk-conscious and collaborative vehicular collision
avoidance system. Veh Technol 2010;59(3):1474–86.

[28] Milanés V, Villagra J, Godoy J, Simo J, Perez J, Onieva E. An intelligent V2I-based traffic management
system. IEEE Trans Intell Trans Syst 2012;13(1):49–58.

[29] Maruoka T, Sato Y, Nakai S, Wada T, Okada H. An extended collision judgment algorithm for vehicular
collision avoidance support system (VCASS) in advanced ITS. In: Proceedings of the vehicular technology
conference. Calgary, Canada; 2008. p. 1–5.

[30] Hunt PB, Robertson DI, Bretherton RD, et al. The SCOOT on-line traffic signal optimisation technique.
Traffic Eng Control 1982;23(4):190–192.

[31] Sims AG, Dobinson KW. The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits.
IEEE Trans Veh Technol 1980;29(2):130–7.

[32] Gradinescu V, Gorgorin C, Diaconescu R. Adaptive traffic lights using car-to-car communication. In:
Proceedings of the IEEE sixty-fifth vehicular technology conference (VTC2007-Spring); 2007. p. 21–5.

[33] Prashanth LA, Bhatnagar S. Reinforcement learning with function approximation for traffic signal control.
IEEE Trans Intell Transp Syst 2011;12(2):412–21.

[34] Wunderlich R, Liu C, Elhanany I, et al. A novel signal-scheduling algorithm with quality-of-service
provisioning for an isolated intersection. IEEE Trans Intell Transp Syst 2008;9(3):536–47.

[35] Cai C, Wang Y, Geers G. Adaptive traffic signal control using vehicle-to-infrastructure communication: a
technical note. In: Proceedings of the second international workshop on computational transportation science,
ACM; 2010. p. 43–7.

[36] Priemer C, Friedrich B. A decentralized adaptive traffic signal control using V2I communication data. In:
Proceedings of the twelfth international IEEE conference on intelligent transportation systems. ITSC’09;
2009. p. 1–6.

[37] Li C, Shimamoto S. An open traffic light control model for reducing vehicles emissions based on ETC
vehicles. IEEE Trans Veh Technol 2012;61(1):97–110.

[38] Lin WH, Wang C. An enhanced 0–1 mixed-integer LP formulation for traffic signal control. IEEE Trans Intell
Transp Syst 2004;5(4):238–45.

[39] Qiao J, Yang N, Gao J. Two-stage fuzzy logic controller for signalized intersection. Syst Man Cybern Part A:
Syst Humans 2011;41(1):178–84.

[40] Abdulhai B, Pringle R, Karakoulas GJ. Reinforcement learning for true adaptive traffic signal control. J
Transp Eng 2003;129(3):278–85.

[41] El-Tantawy S, Abdulhai B. An agent-based learning towards decentralized and coordinated traffic signal
control. In: Proceedings of the intelligent transportation systems (ITSC). Funchal; 2010: p. 665–70.

[42] Maslekar N, Boussedjra M, Mouzna J, Labiod H. VANET based adaptive traffic signal control. In: Proceedings
of the vehicular technology conference (VTC Spring). Budapest, Hungary; 2011. p. 1–5.

[43] Glaser S, Vanholme B, Mammar S, et al. Maneuver-based trajectory planning for highly autonomous vehicles
on real road with traffic and driver interaction. IEEE Trans Intell Transp Syst 2010;11(3):589–606.

[44] Lee J, Park B. Development and evaluation of a cooperative vehicle intersection control algorithm under the
connected vehicles environment. IEEE Trans Intell Transp Syst 2012;13(1):81–90.

[45] Milanés V, Pérez J, Onieva E, Gonzalez C. Controller for urban intersections based on wireless communications
and fuzzy logic. IEEE Trans Intell Transp Syst 2010;11(1):243–8.

[46] Dresner K, Stone P. Multiagent traffic management: a reservation-based intersection control mechanism. In:
Proceedings of the third international joint conference on autonomous agents and multiagent systems. New
York, America; 2004. p. 530–37.

http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0115
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0115
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0120
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0120
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0125
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0125
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0130
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0130
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0135
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0135
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0140
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0140

317REFERENCES

[47] Dresner K, Stone P. Multiagent traffic management: an improved intersection control mechanism. In:
Proceedings of the fourth international joint conference on autonomous agents and multiagent systems. New
York, America; 2005. p. 471–77.

[48] Wu W, Zhang J, Luo A, Cao J. Distributed mutual exclusion algorithms for intersection traffic control. IEEE
Trans Parallel Distrib Syst 2015;26(1).

[49] Ferreira M, d’Orey PM. On the impact of virtual traffic lights on carbon emissions mitigation. IEEE Trans
Intell Transp Syst 2012;13(1):284–95.

[50] Chen PY, Guo Y, Chen WT. Fuel-saving navigation system in VANETs. In: Proceedings of the vehicular
technology conference. Ottawa, Canada; 2010. p. 1–5.

[51] Collins K, Muntean GM. Route-based vehicular traffic management for wireless access in vehicular
environments. In: Proceedings of the vehicular technology conference. Calgary, Canada; 2008. p. 1–5.

[52] Chim T, Yiu S, Hui L, Li V. VSPN: VANET-based secure and privacy-preserving navigation. IEEE Trans
Comp 2014;63(2):510–524.

[53] Leontiadis I, Marfia G, Mack D, Pau G, Mascolo C, Gerla M. On the effectiveness of an opportunistic traffic
management system for vehicular networks. IEEE Trans Intell Transp Syst 2011;12(4):1537–48.

[54] Verroios V, Efstathiou V, Delis A. Reaching available public parking spaces in urban environments using ad
hoc networking. In: Proceedings of the mobile data management. Lulea, Sweden; 2011, 1. p. 141–51.

[55] Lu R, Lin X, Zhu H, Shen X. SPARK: a new VANET-based smart parking scheme for large parking lots. In:
Proceeding of the INFOCOM. Rio de Janeiro, Brazil; 2009. p. 1413–21.

[56] Murat C, Daniel G, Martin M. Decentralized discovery of free parking places. In: Proceedings of the third
international workshop on vehicular ad hoc networks. New York, America; 2006. p. 30–9.

[57] Gehring O, Fritz H. Practical results of a longitudinal control concept for truck platooning with vehicle to
vehicle communication. In: Proceedings of the intelligent transportation system. Boston, America; 1997.
p. 117–22.

[58] Seiler P, Pant A, Hedrick K. Disturbance propagation in vehicle strings. Autom Control 2004;49(10):
1835–42.

[59] Li L, Wang FY. Cooperative driving at blind crossings using intervehicle communication. Veh Technol
2006;55(6):1712–24.

[60] Moreau L. Leaderless coordination via bidirectional and unidirectional time-dependent communication. In:
Proceedings of the decision and control. Maui, Hawaii; 2003, 3. p. 3070–5.

[61] Ksentini A, Tounsi H, Frikha M. A proxy-based framework for QoS-enabled Internet access in VANETS. In:
Proceedings of the communications and networking. Tozeur , France; 2010. p. 1–8.

[62] Asefi M, Céspedes S, Shen X, Mark JW. A seamless quality-driven multi-hop data delivery scheme for video
streaming in urban VANET scenarios. In: Proceedings of the communications. Kyoto, Japan; 2011. p. 1–5.

[63] Xing M, Cai L. Adaptive video streaming with inter-vehicle relay for highway VANET scenario. In:
Proceedings of the communications (ICC). Ottawa, Canada; 2012. p. 5168–72.

[64] Razzaq A, Mehaoua A. Video transport over VANETs: multi-stream coding with multi-path and network
coding. In: Proceedings of the local computer networks. Denver, America; 2010. p. 32–9.

[65] Guo M, Ammar MH, Zegura EW. V3: a vehicle-to-vehicle live video streaming architecture. Pervasive
Mobile Comput 2005;1(4):404–24.

[66] Lee CH, Huang CM, Yang CC, Wang TH. A cooperative video streaming system over the integrated cellular
and DSRC networks. In: Proceedings of the vehicular technology conference. San Francisco, America; 2011.
p. 1–5.

[67] Seferoglu H, Markopoulou A. Opportunistic network coding for video streaming over wireless. In: Proceedings
of the packet video. Lausanne, Switzerland; 2007. p. 191–200.

[68] Xie F, Hua KA, Wang W, Ho YH. Performance study of live video streaming over highway vehicular ad hoc
networks. In: Proceedings of the vehicular technology conference. Baltimore, America; 2007. p. 2121–5.

http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0145
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0145
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0150
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0150
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0155
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0155
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0160
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0160
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0165
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0165
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0170
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0170
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0175
http://refhub.elsevier.com/B978-0-12-805395-9.00016-2/ref0175

Page left intentionally blank

319

CHAPTER

CLOUD-BASED
SMART-FACILITIES
MANAGEMENT

S. Majumdar
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

17.1 INTRODUCTION
The exponential growth of internet-enabled devices supported by the emerging paradigm of Internet
of Things (IoT) is expected to reach 50 billion by 2020 [1]. The use of sensor-equipped smart facilities
has been increasing, and is expected to become more and more prevalent as we approach the growing
world of IoT that allows various sensor-based devices and systems to be monitored and/or controlled
over a network. Examples of such facilities that are the ingredients of smart cities include sensor-
based bridges and smart buildings, as well as industrial machines, including aerospace machinery [2].
Remote monitoring and intelligent management of these facilities can significantly reduce the mainte-
nance cost as well as prevent failures leading to accidents that may result from the inability to detect
faults in a timely manner. A great deal of research is critically needed to devise cloud-based techniques
that will enable the monitoring, management, and maintenance of multiple geographically distributed
remote smart-facilities.

Regardless of its exact nature, the management of a smart facility typically involves the following
three steps:

1. collecting the sensor data that reflects the current state/health of the facility
2. analyzing the sensor data
3. making decisions regarding its management/maintenance.

Sensors, data repositories, data-analysis tools, and archival databases containing the previous main-
tenance history of a given facility, as well as computing platforms/servers that perform time-consum-
ing data analytics on sensor data, are often scattered across a large geographical region that may span
different locations on a campus, multiple sites within a city, or multiple cities in a country, for example.
This chapter concerns the state of the art in smart-facility management techniques, and includes a
report on existing research that is aimed at using a cloud-based solution for unifying geographically
dispersed diverse resources, and making them available on demand to clients who monitor and manage
their respective smart facilities.

The following section presents background material, including a discussion of a representative set of
related work that addresses various issues that are important in the context of cloud-based smart-facility
management. A description of a general cloud-based solution to the smart-facilities management problem

17

320 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

is presented in Section 17.3. A layered architecture for the system, including the middleware necessary
for supporting smart-facility management, is described. A discussion of generic middleware services that
are needed to support the management of smart facilities is presented in Section 17.4. The two follow-
ing sections focus on the management of resources. Section 17.5 discusses the management of sensor
resources that are often used for monitoring various attributes of a smart facility that reflect its operational
health. Applications for analyzing such sensor data are often CPU intensive. A discussion of resource
management techniques on parallel systems used for performing such CPU-intensive data analytics re-
quired in the management of smart facilities is presented in Section 17.6. Sections 17.7 and 17.8 present
two case-studies, one of which describes a cloud-based solution for the management of bridges, and
the other focuses on a collaboration platform for performing research on smart-facilities management.
Section 17.9 concludes the chapter and directions for future research are presented in Section 17.9.1.

17.2 BACKGROUND AND RELATED WORK
A smart facility is a form of a cyber-physical system that is characterized by collaborating elements
controlling physical entities. Performing a detailed literature survey on cyber-physical systems is be-
yond the scope of this chapter. A representative set of works is included as an example of the existing
work in the area. Management of cyber-physical systems has received considerable attention that is
captured in [3]. The book describes a proposal from a European consortium, IMC-AESOP, to use
service-oriented architectures for next-generation supervisory-control-and-data-acquisition (SCADA)
ready systems. The functionalities exposed by such systems as services are proposed to be hosted on
a cloud. Examples of the application of the proposed architecture for various cyber-physical systems,
including the control of a manufacturing operation, are included in [3]. The challenges associated
with the management of cyber-physical systems and a vision for their computer-based management is
described in [4]. Systems for the management of smart homes have also been described in the litera-
ture. The work in [5] focuses on automatic sensor-control and monitoring, whereas the authors of [6]
propose a futuristic cloud-based facility for monitoring multiple homes. The problems with current
semimanual approaches to the maintenance of critical infrastructure, such as bridges and industrial
machinery, and a proposal for cloud-based solutions, are described in [2]. Examples of available sys-
tems for smart-facility management includes a system for optimizing energy use in buildings [7] and a
computerized asset-maintenance and management software [8].

Smart-facility management is a multifaceted problem. Techniques and systems from various do-
mains that include cloud computing, senor networks deployed on a facility for monitoring its various
attributes, and parallel-processing techniques for speeding up the execution of analytics programs used
for analyzing sensor data, need to be integrated in order to generate an effective solution for the man-
agement of smart facilities. A discussion of each of these issues is included in this section.

The integration of sensor networks with a grid [9] or a cloud [10], referred to as a sensor grid/
cloud, enables the processing of sensor data from smart facilities on the grid/cloud. Most existing work
on sensor networks has focused on a single application using all of the sensors in the Wireless Sensor
Network (WSN). However, with the advent of multipurpose sensor technology that incorporates the
ability to sense multiple phenomena on the same sensor node, allows a sensor node to be shared among
multiple concurrent applications [11]. When the same WSN is shared among multiple applications, al-
gorithms for resource management that include techniques for mapping application requests to sensors,

32117.3 A CLOUD-BASED ARCHITECTURE FOR SMART-FACILITY MANAGEMENT

along with the scheduling of application requests contending for the same sensor node, become impor-
tant. However, little research seems to be available in the field of allocating and scheduling multiple
applications that use a WSN. A few examples are discussed next. In [12] and [13], the authors describe
an allocation technique, based on the Quality of Monitoring, for handling multiple applications in shared
sensor-networks. The work described in [14] concerns techniques for scheduling requests from multiple
applications, based on their deadlines. Sensor-allocation techniques that adjust the sleep/wake duty cycle
of the sensors to extend the lifetime of a WSN are discussed in [15]. A more detailed literature survey on
resource management techniques for shared WSNs is available from [16]. A comprehensive study on the
utility of using various attributes of the WSN system, and the workload processed in devising resource
management algorithms, are discussed in the context of sensor allocation in [16], and in the context of
request scheduling in [17]. This research is discussed in more detail in Section 17.5.

Managing compute resources is important in order to run compute-intensive data-analytics pro-
grams that are used to analyze data collection on a smart facility. Parallel-processing frameworks such
as MapReduce are often deployed for speeding up the execution of such programs. Resource manage-
ment on grids and clouds is a well-researched problem. Relatively little work exists in the domain of
scheduling and matchmaking MapReduce jobs with deadlines. Such deadlines are important in the
context of real-time data analytics, for example. Due to space limitations, only a representative set of
papers is discussed. Examples of existing work includes OpenStack, which is a collaborative open-
source cloud-software project, focusing on a resource-management middleware for cloud, to make
global resource-management decisions in order to achieve high-system performance [18]. A Deadline
Constraint Scheduler for Hadoop, an implementation of the MapReduce framework by Apache [19] for
handling jobs with deadlines, is discussed in [20], whereas a technique that focuses on the scheduling
of workloads that includes both MapReduce jobs with deadlines (real-time jobs) and without deadlines
(nonreal-time jobs), is discussed in [21]. In [22], the authors describe two resource-allocation policies
based on the Earliest Deadline First (EDF) strategy for Hadoop. Effective resource management tech-
niques for MapReduce jobs that are based on the theory of optimization are observed to lead to high
system-performance, and are described in more detail in Section 17.6.

17.3 A CLOUD-BASED ARCHITECTURE FOR SMART-FACILITY
MANAGEMENT
Fig. 17.1 displays a cloud-based smart facilities management system. The smart facility, a bridge, in
the diagram is only an example and can be replaced by other smart facilities.

Although Fig. 17.1 shows multiple bridges equipped with wireless sensors, a facility-management
system can be dedicated to a single facility as well. As opposed to a data-center cloud that typically
handles compute and storage resources, this heterogeneous cloud unifies a diverse set of resources that
may include compute and storage servers, software tools for data analysis, archival storage systems,
and data bases holding various information about the facility, including its maintenance history and
data repositories. The system administrator, bridge engineer, and the bridge operator are personnel that
are involved in overseeing the management of the smart facility. As shown in Fig. 17.1, multiple levels
of networks may be used. A backbone network typically spans multiple geographic regions, such as
provinces within a country. Resources or personnel, for example, may be connected to the backbone
network through their respective local access networks.

322 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

A layered architecture for the system used for managing a smart facility is presented in Fig. 17.2. The
network layer provides the necessary support for communication among the various system-resources
that include both hardware resources, such as computing and storage devices, as well as data-analysis
software. Messages supported by the messaging layer are typically used for intercommunication among
components that include these resources, as well as middleware components that are discussed in the
following section. The messaging layer uses the underlying security layer to ensure that communication

FIGURE 17.2 System Architecture

FIGURE 17.1 Cloud-Based Smart-Facility Management

32317.4 MIDDLEWARE SERVICES

is performed in a secure manner. A broad range of security may be provided: from using virtual private
networks to data encryption. The middleware layer and the interface set provide various services for
the proper functioning of the smart facility that are discussed next.

17.4 MIDDLEWARE SERVICES
This section presents a set of core services for the cloud-based smart-facility management system.
Other services in addition to the core may be deployed if warranted by the management requirements
of a given facility.

Authentication and authorization service: The role of this service is to allow only valid users ac-
cess to the system. Each user is typically associated with a set of operations that she or he is allowed
to perform on a resource. After authentication, when a user initiates an operation on a resource, the
authorization service performs the required access control and determines whether or not the user is
allowed to perform the requested operation on the respective resource.

Research is underway to address the challenges of authentication and authorization on IoT-based
systems. An example of such a challenge is highlighted in the literature, through an example of a
 hacker interfering with the operation of an insulin pump by impersonating the authorized user [23].
Techniques for addressing the authentication and authorization issues in the context of IoT are re-
ceiving a great deal of attention from researchers. Examples include techniques for efficient key
establishment for an Elliptic Curve Cryptography technique, and a role-based Access Control Policy
[24]. A smart card and physical unclonable functions (PUF) for authentication are considered in [25]
that proposes innovative workflows of authentication protocols, and studies their behavior on an IoT
testbed. Results of such research are useful in the context of incorporating the authentication and
authorization service.

Data-transfer service: This service is responsible for performing the transfer of data between a
source and a sink. Certain systems [26] allow two types of data-transfer operations. During bulk data
transfer, large volumes of data may be transferred between an originating and a receiving folder.
Minimization of transfer latency is often a desirable system objective, but bulk data transfers are
generally performed on a best-effort basis. For real-time data transfer, a deadline may be associated
with the data-transfer operation. Moreover, continuous streams of data often need to be analyzed in
real time. For real-time data transfer and processing operations that are typically associated with the
real-time analytics performed on sensor data generated by a smart facility, resources used in running
the data-analytics application are often reserved in advance so that the real-time requirements of the
system can be met.

Alarm service: This service is responsible for raising an alarm when the analysis of sensor data
indicates either a fault or an exceptional situation in the system requiring further attention. The data
collected by the sensors is analyzed, and an alarm condition is said to have occurred when a certain
predefined system-state is attained. The service informs authorized personnel (eg, the system adminis-
trator and/or a facility operator) when such an alarm condition is reached.

Resource management service: This service is responsible for managing the various resources in
the system that include compute and storage, as well as software resources such as sensor-data anal-
ysis tools. Typical resource management operations handled by this service include facilitating the
discovery of a resource, or reserving a set of resources for performing a desired set of operations (jobs)
on sensor data [26,27].

324 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

Multiple resources that may include compute and storage resources, for example, are often required
to be reserved together for the execution of such a job. Resource management algorithms that select
an appropriate resource from a set of available resources, and determine the starting time for the job
execution of meeting a deadline for completion associated with the request, are important components
of the resource management service. This is because performing real-time data analytics for monitor-
ing the structural health of smart infrastructures, as well as for performing various other operations for
maintaining and controlling smart facilities, often require the processing of requests with deadlines:
the job associated with the request needs to be completed before the expiration of the request deadline.
Resource allocation, and the scheduling of algorithms for handling an advance reservation-request as-
sociated with a deadline, are available in the grid and cloud literature [28,29] and can be adapted by the
resource management service for smart facilities management [27]. If some of these requests need to
be served immediately, they can still be handled by these algorithms as advance reservation-requests
with zero as their earliest start-time request.

Additional issues, such as reducing the cost of operating cloud data-centers, have started receiving
attention from researchers. Computational and storage resources from a data center can be used for
smart facilities management. Cost of energy is a significant proportion of the operational cost for a
data center. Frequency scaling of compute servers to alter the power consumption of their CPUs, and
consolidating application executions on a subset of servers while switching off the others, are examples
of techniques being investigated for reducing the energy consumption of servers. Auto-scaling, or in-
creasing/decreasing the number of resources devoted to a client in response to an increase/decrease in
workload, is another method of controlling operational cost. Deployment of these techniques can be
beneficial in the context of large smart-facilities that require data-center resources for their control and/
or maintenance.

Management of sensor resources that are shared by multiple applications often requires sepa-
rate algorithms for allocation and scheduling, and is discussed in Section 17.5. Special consider-
ations are required for managing resources that run data-analytics software on big data collected on
smart facilities. Resource management algorithms for such data-analytics platforms are discussed in
Section 17.6.

System-monitoring service: The objective of this service is to monitor the health of the different
resources (both hardware servers and software tools). Periodic probing is often used to determine
whether or not the respective resources are in running condition. Upon discovery of a failure, the sys-
tem administrator is informed so that corrective action may be performed. System-monitoring tools
also maintain various performance statistics, such as utilization of various resources, message transfer
rates, and system throughput at various points in time. The measured metrics are then displayed by
request to the system administrator.

Current research is directed toward addressing the challenges of providing a service for monitoring
IoT-based systems, challenges that are rooted in the limited power and capability of flexible com-
munication interfaces and coverage for wireless sensors [30]. Research is underway to address these
challenges. Examples include an ARM9 processor-based gateway for collecting continuous, periodic,
and sequential spatial telematics [30], and techniques for remote monitoring of an electric vehicle [31].
The emergence of new papers in the area demonstrates the importance of a system-monitoring service
in the management of sensor-based systems such as smart facilities. A detailed survey, however, is
beyond the scope of this chapter. The interested reader is referred to the list of related papers included
in the two papers referred to in this paragraph.

32517.5 WIRELESS SENSOR NETWORKS

In addition to the middleware services, interfaces that are required for the operation of the smart-
facility management system are described next.

Graphical user interface (GUI): The role of the GUI is to make the various functionalities for
managing smart facilities available to the person in charge of maintaining the smart facility. By acti-
vating the various buttons on the GUI, maintenance personnel can perform the desired operations on
the system.

Resource interfaces: Resources such as compute and storage servers, as well as software tools,
are connected to the platform for facilities management through interfaces, also known as adapters
[27]. The role of the adapter is to provide a common application-programming interface that clients
can implement, using diverse technologies. For example, a client running on top of a Linux operating
system can invoke a software tool running on the Windows platform. Exposing resources connected to
the cloud-based platform, such as Web services, is suggested in [27,32]. Any operation to be performed
on the resource is performed by invoking the respective Web service (WS). Both a SOAP-based and a
RESTful WS may be used. The term RESTful is often abbreviated as REST that stands for Representa-
tion State Transfer. A hybrid WS that switches between these two WS-types, based on the operation
to be performed, is discussed in [32]. A hybrid WS effectively combines the lightweight feature of a
RESTful WS with the support for security and atomicity that accompanies a SOAP-based WS. The
authors show that a significant improvement in performance over a standard SOAP-based WS can be
achieved by using a hybrid WS.

Centralized versus distributed control: Both centralized as well as distributed approaches have been
used in cloud-based systems that concern smart-facility management. The control software, including
the middleware services, may be run at a single node. Such a centralized approach simplifies system
design and maintenance, and has been used in [26]. A distributed control that distributes the various
control operations among multiple nodes is more complex, but offers the advantages of improved
scalability and reliability. Such a distributed architecture, in which middleware services are spread/
duplicated across multiple nodes, has been proposed for bridge management in [27].

17.5 RESOURCE MANAGEMENT TECHNIQUES FOR WIRELESS SENSOR
NETWORKS
Smart facilities that include buildings, bridges, and various industrial and aerospace machinery are
often based on sensor networks. Due to their ready availability and cost effectiveness, WSNs are of-
ten deployed on these types of smart facilities. Management of WSNs accessed by a single client is a
well-studied problem. Although comparatively a lesser amount of work is available in the literature,
WSNs serving multiple applications have also started receiving attention. These systems often deploy
multifunctional sensor nodes that can sense multiple phenomena. Multiple client applications on a
smart-facility management system, each using a specific type of sensor data, can access the sensor
nodes that are shared among these various applications. Algorithms for resource management that need
to deal with the allocation of sensors to competing applications, and the scheduling of sensor requests
that queue up for the same sensor node, are important in this context. Both allocation and scheduling
techniques in the case of a sensor network attached to a grid or cloud have been discussed in [17] and
[16], and can be adapted to the cloud-based facility management domain. The model of a system that
combines a WSN with a grid for processing the sensor data is presented in Fig. 17.3 [17]. Although

326 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

this example is based on a grid, the same functionality can be achieved with the help of a cloud as well.
Users in Fig. 17.3 send queries for getting information from the WSN via the grid network. The proxy
exposes the functionality of the sensor nodes to the grid and runs the resource management algorithms.
The resource management functionality of proxy node (Fig. 17.3) that performs all of these resource
management decisions in [17] can be mapped to the node running the resource management service
shown in Fig. 17.2, for example. Compute and storage nodes in the grid in the figure are used for run-
ning sensor-data analytics applications for the smart-facility management system. A WSN is typically
organized in clusters, with a particular sensor node designated as the cluster head, handling the com-
munication between the proxy and the other sensor nodes in the cluster (Fig. 17.3). A short discussion
of both sensor allocation and sensor-request scheduling performed at the proxy is presented.

17.5.1 SENSOR ALLOCATION
Applications, which process data collected by a group of sensors, generate queries or requests for the
system. These queries can be handled by multiple sensors monitoring the desired phenomena. Sensors
chosen from the available set can thus serve such an application request. The allocation algorithm
determines which sensors from a set of available sensors are to be used for serving the request. Alloca-
tion of sensors to applications has been discussed in the literature. Various issues, such as static versus
dynamic algorithms, whether or not to use knowledge of the system, and workload characteristics
in resource management giving rise to superior performance, have been investigated by researchers.

FIGURE 17.3 Model of Wireless Sensor Network (from Ref. [17])

327

A comparison of a number of static and dynamic allocation algorithms is presented in [16]. For a static
algorithm, once the allocation is done the same sensors are always used for serving the request from a
given application, whereas for a dynamic algorithm, the choice of sensors for serving a particular ap-
plication request is determined after the request arrival, and can thus change during the lifetime of the
system. The authors demonstrate the effectiveness of using knowledge of both application character-
istics, and the knowledge of system state, in performing sensor allocation in the context of both static
and dynamic algorithms. A simulation-based analysis shows the superiority of a dynamic algorithm in
comparison to its static counterpart, as captured in the network lifetime for the WSN that is a measure
of the time that the WSN can run without replenishing its power source. Fig. 17.4 displays a graph
that shows the relationship between minimum energy and the number of applications accessing the
WSN. Minimum Energy is the energy of a sensor node that has the lowest remaining energy among
all sensor nodes at the end of the simulation period. Minimum energy is an indication of network life-
time: the higher the minimum energy, the higher is the network lifetime, and thus better is the system
performance. A number of different algorithms were analyzed in [16]. Fig. 17.4 shows a performance
comparison between one of the best static algorithms, called CPU Load Balanced Allocation (CLBA)
and the best dynamic algorithm Balanced Metric Allocation (BMA). Both algorithms are based on the
well-known “load balancing” principle for resource management. CLBA focuses only on balancing the
energy spent by the CPU component of the sensor nodes, whereas BMA aims to balance the total en-
ergy consumption that is an aggregate of the energy used by both the CPU and radio component of the
sensor nodes in the WSN. The superiority of the dynamic algorithm, BMA, over the static algorithm,
CLBA, displayed in Fig. 17.4, is also observed for a broad range of other system and workload param-
eters. The paper demonstrates the effectiveness of using system and workload characteristics in sensor
allocation, and concludes that dynamic algorithms that use knowledge of both the energy-associated
CPU and radio components give rise to high performance.

17.5.2 REQUEST SCHEDULING
Multiple application requests may contend for the same sensor node, and the scheduling algorithm
determines the order in which these requests are to be served. Researchers have investigated the

17.5 WIRELESS SENSOR NETWORKS

FIGURE 17.4 Performance of Static and Dynamic Allocation Algorithms (from Ref. [16])

328 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

scheduling problem in the context of shared WSNs hosting multiple applications. The work presented
in [17] shows that a scheduling algorithm can have a significant impact on the average request turn-
around times. Using knowledge of both system and network topology information in scheduling has
been observed to lead to a higher performance [17]. A number of different scheduling algorithms
that use varying degrees of knowledge of system and workload parameters is investigated. The Least
Weighted Farthest Number Distance Product First (LWFNDPF) algorithm is observed to produce the
best performance for most of the configurations experimented with. In a WSN, messages associated
with the sensors that are located farther away from the cluster head (Fig. 17.3) experience greater
delays in comparison to sensors that are located closer to the cluster head. LWFNDPF uses a metric
called Farthest Number Distance Product (FNDP) that is the product of the number of sensors that are
farthest away from the cluster head among all the sensors used by the application, and the distance of
these sensors from the cluster head. The distances of sensors are measured in the number of hops that a
message needs to go through when a request travels from the cluster head to the respective sensor node.
The FNDP for each application is multiplied by a weight factor that is a tuning parameter. LWFNDPF
associates a higher priority for application requests with small FNDP that are expected to experience
lower delays in the WSN. A detailed discussion is provided in [17].

17.6 RESOURCE MANAGEMENT TECHNIQUES FOR SUPPORTING
DATA ANALYTICS
On a smart facility, analyses of sensor data, as well as archived maintenance data, are both important
for its effective management. Using batch-data-analytics techniques on archived data is to be per-
formed, for example, to determine the next maintenance cycle, whereas real-time data analytics that
concerns the processing of sensor data in real time may be important for performing real-time control
of the facility or for handling emergencies. MapReduce is a well-known technique [33] that is used for
performing data analytics on large volumes of data that are typical of smart facilities. The basic idea
behind MapReduce is briefly explained.

The input data is divided into chunks, each of which is handled by a separate map task. Multiple
map tasks, each handling a specific chunk of input data, are executed concurrently on a parallel system,
such as a cluster and a cloud. The outputs of the different map tasks are then combined with the help of
several reduce tasks that run concurrently on the system. Although the same MapReduce architecture is
used, the application logic for the map and reduce tasks can vary from one facility to another. Effective
allocation of processors to tasks and task scheduling are crucial for achieving high system-performance.
Resource management techniques for task allocation and scheduling for MapReduce systems that pro-
cess jobs on a best-effort basis are thoroughly studied. Associating a Service Level Agreement (SLA)
that includes a deadline with MapReduce jobs has recently started receiving attention [20,21,34]. The
ability to associate a deadline with a job is important for performing real-time data analytics, including
the real-time processing of event logs collected on the facility. Resource management is known to be
a computationally hard problem. Association of a deadline, and the availability of multiple resources
in a cloud, used, for example, for the deployment of the MapReduce framework that is characterized
by multiple phases of operation, further complicates the problem. Innovative algorithms for resource
allocation, and scheduling for handling a batch of MapReduce jobs with deadlines are described in
[35]. The authors propose two different approaches, based on optimization techniques for resource

32917.6 SUPPORTING DATA ANALYTICS

management: Mixed Integer Linear Programming (MILP) and Constraint programming (CP). The
MILP-based resource management algorithm is implemented using LINGO [36], whereas IBM ILOG
CPLEX [37] is used in implementing the CP-based algorithm. The results of a simulation-based perfor-
mance evaluation presented in [35] demonstrate the superiority of the CP-based technique (Fig. 17.5).
The figure displays the results for two of the largest of the five workloads used in the research. Large
1 corresponds to a batch of 2 jobs, with each job having 100 map tasks and 30 reduce tasks, whereas
Large 2 corresponds to a batch of 50 jobs, with each job having a number of map tasks ranging from
1 to 100, and a number of reduce tasks ranging from 1 to the number of map tasks in the respective
job. Further details of the workload and system parameters are provided in [35]. The completion time
for the batch, as well as the processing time for the resource management algorithm (system overhead
incurred), are much lower for CP (Approach 3 in Fig. 17.5) in comparison to MILP (Approach 1 in
Fig. 17.5). Note that among the two approaches, only the CP-based technique could handle the Large 2
workload. Following the success of the CP-based approach in the case of batch processing, the authors
devised a CP-based technique for handling MapReduce jobs, with SLAs for clouds subjected to an
open stream of arrivals of MapReduce jobs [29]. The high performance of their CP-based algorithm is
reflected in the low number of jobs with missed deadlines, reported in a simulation-based investigation.
Validation of the effectiveness of their algorithm on real Hadoop clusters has also been performed.

17.6.1 STREAMING DATA ANALYTICS
Batch, real-time, and streaming data-analytics are important in the context of analyzing data collected
on smart facilities. As discussed earlier, batch analytics is performed on stored archival data, whereas
real-time analytics is needed when an event (eg, a storm) occurs, requiring the analysis of the ef-
fect of the event on the smart facility in real time. MapReduce and MapReduce with deadlines can
be used in these two situations respectively. Streaming data analytics is required when streams of
sensor data need to be analyzed continuously for determining the health of the system, for example.
Parallel- processing frameworks such as Storm [38] have been developed for performing streaming

FIGURE 17.5 Performance of Different Resource Management Approaches for a System Running MapReduce
Jobs (from Ref. [35])

330 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

data- analytics. Resource management for achieving effective streaming data-analytics has started re-
ceiving attention from researchers recently. Existing work includes using parallel processing to pro-
vide Quality of Service (QoS) guarantees for stream processing, described in [39]. A reactive scaling
strategy to enforce latency constraints on the computation performed on a Stream Processing Engine
is presented in [40]. No permanent static provisioning is assumed, and the technique can effectively
handle varying workloads. Resource management for systems supporting streaming analytics is an
important problem and needs further investigation.

17.7 CASE STUDY: MANAGEMENT OF SENSOR-BASED BRIDGES
Monitoring of the structural health of critical infrastructure such as bridges and their maintenance is
extremely important for the safety of the public, as well as for reducing the cost associated with their
functioning and maintenance. In Canada, there are about 55,000 bridges [41], and 40% of these bridges
are more than 40 years old. A 2009 report on US bridges states that a quarter of the bridges were struc-
turally deficient or functionally obsolete [42]. Bridge maintenance is of great economic importance and
concerns public safety. Billions of dollars are spent every year in Canada and the US on this critical
service, as it is a key component of our transportation system and is directly tied to the safety of indi-
viduals. The existing practice in bridge engineering does not use an effective transfer of information
and knowledge, nor does it encourage collaboration among the people involved: bridge engineers,
researchers, and bridge owners. This fragmented approach, as well as a large number of manual steps
in the maintenance process, contribute to the high cost associated with bridge maintenance.

A cloud middleware for effective management of sensor-based bridges that unifies data, comput-
ing, and storage resources, as well as data analysis tools, and automates several steps of the manage-
ment process for mitigating the problems discussed in the previous paragraph, is proposed in [27].
The research was performed by Carleton University in collaboration with Cistel in Ottawa, Canada,
and was supported by the Ontario Centers of Excellence. The system described in the paper focuses
on the “network enabling” and management of various resources, such as sensor data repositories,
computing and storage devices, databases containing historic data regarding the state and maintenance
of the infrastructure, and software tools in such a way so as to allow these resources to be remotely ac-
cessed and shared through various user interfaces. The middleware thus serves as glue that unifies the
geographically dispersed resources and makes them available on demand to the users of the system. It
provides the connectivity and interoperability among diverse resources, and manages these resources
in an effective manner. Although this work focuses on a middleware for integrating a heterogeneous
set of geographically dispersed resources for improving the current practice in bridge management
in a cost-effective manner, the proposed middleware is generic in nature and can be adapted to other
infrastructure management problems with a modest effort. The middleware provides seamless access
to multiple nodes, each of which typically runs at a specific site under the control of a Gateway Agent
(GWA). Fig. 17.6 provides an implementation view of the middleware, and an indication of the respec-
tive technologies used in the system is described in [27]. The GWA provides access to the resources
available at a specific site to an authenticated user who is allowed to perform the desired operation on
the resource. Authentication and authorization of users are performed at a specific “master node.” The
security layer under the GWA is responsible for secure and authorized communication between the
agent and other system components.

33117.8 MANAGEMENT OF SMART MACHINERY

Two key services are provided. A resource management service is responsible for mapping a user
request to an appropriate resource that is apt for serving the request. Both on-demand (OD) and Advance
Reservation (AR) requests are allowed [27]. An OD request is satisfied on a best-effort basis, whereas
an AR includes an earliest start time, estimated execution time, and a deadline for request completion. In
addition to resource allocation, this service is also responsible for scheduling the request on the selected
resource and determining the start time for request execution. The resource registry service is used for
keeping track of the resource characteristics and the method of accessing the resource. The registry is
then used during the client request to resource mapping. Interoperability is provided by exposing a re-
source as a WS that can be accessed via an Application Programming Interface (API) associated with the
resource. A detailed description of the middleware is provided in [27]. A Java Message Service (JMS)
based messaging system supported by a JMS Server (Fig. 17.6) is proposed for the transfer of XML and
SOAP messages. A previous version of the system had transferred requests over standard HTTP.

17.8 CASE STUDY: RESEARCH COLLABORATION PLATFORM
FOR MANAGEMENT OF SMART MACHINERY
Research collaboration often involves researchers at multiple sites. Research on smart facilities man-
agement is no exception. Researchers in a collaborative team often have geographically dispersed re-
sources that may include:

• Sensor data repositories: contain data generated by various sensors monitoring characteristics
of smart facilities. For assessing the structural health of a sensor-based bridge, for example,
such data may include vibration data as well as temperature data, whereas for smart industrial

FIGURE 17.6 Middleware Architecture for Sensor-Based Bridge Management (based on Ref. [27])

332 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

machinery the sensor data repositories may contain data reflecting the structural health of the
various moving parts of a machine.

• Archival databases: contain stored data on the respective smart facility, including the maintenance
history of the facility, for example.

• Software tools and application programs: include software tools that perform analysis of sensor
data, and various additional applications that perform the fusion of data collected by multiple
sensors, and that perform data analytics on the fused data.

• Servers: dedicated servers that run specific tools or clusters for performing advanced computing.

The resources are typically located at different geographic locations, each of which corresponds to
the location of a researcher’s institution.

Such a distribution of resources is a hindrance for collaborative research. Research Platform for
Smart Facilities (RP-SMARF) is a cloud-based platform that unifies the geographically distributed
resources, and makes them available on demand to a member of the research team [26]. Thus, a re-
searcher located at University of Calgary, Canada can access a tool available at Carleton University,
located thousands of miles away in Ottawa, regardless of the firewalls existing at both institutions. RP-
SMARF, developed by Carleton University and its partner Solana Networks, with funding from the
Canadian Network for the Advancement of Research, Industry and Education (CANARIE), provides
the essential glue that enables resource unification and a seamless sharing of resources that may be
scattered across the country, or the world.

The control of RP-SMARF is performed by a control server called the SMARF Control Server
(SCS). Multiple resources located at different sites within an institution run behind a firewall provided
by the institution. A SMARF Remote Agent (SRA) runs behind every firewall and is instrumental in
the communication between SCS and the resource. The Internet Communication Engine (ICE) [43]
allows a connection between SCS and an SRA running behind the respective firewall. Establishing an
ICE connection between SCS and an SRA enables bidirectional communication between these two
entities. The responses from a resource sent via SRA are directed to the client’s browser by SCS. In
a more recent release of RP-SMARF, ICE is being replaced by Websockets [44] to support the com-
munication between SRA and SCS.

The important features of RP-SMARF include [26]:

• Simplified usage of software tools: RP-SMARF provides a Graphical User Interface (GUI) based
process for setting up a tool that walks a user through the steps of configuring and running the
respective tool on a data folder, available at any of the sites integrated by RP-SMARF. This
allows a user to quickly run tools and avoid the lengthy period of time the user will otherwise
need to learn to configure and use the tool.

• Support for both batch and interactive modes: A heterogeneous set of resources, including
software tools, may be connected to RP-MARF. Some tools, including the Signal Processing
Platform for Analysis of Structural Health (SPPLASH) [45], which is used for processing sensor
data recorded on bridges, can operate in two modes. Multiple input data-files can be processed
sequentially in the “batch” mode. In the “interactive” mode, a GUI provides interactive access to
the tool, for example, for visualizing the behavior of the facility described by the dataset, specified
as input for the tool. Fig. 17.7 provides an example of using SPPLASH in the interactive mode,
for displaying vibrations on a bridge span that resulted from a storm, by processing the sensor
data recorded during the storm. A GUI for the tool is displayed on the left, and the tool output is
displayed on the right-hand side of the figure.

333

Regardless of the tool/resource type, SRA and SCS perform the intercommunication between
a tool and its user. In order to enable the two modes of tool operations described earlier, two
different types of communication are supported between a client and a software tool: interactive
and batch. Interactive tool invocation is supported with the help of a Virtual Network Computing
(VNC) server, or the Windows Remote Desk Top Protocol (RDP) running on the remote machine
hosting the tool. When a user needs to connect to the machine running the tool, the user’s browser
connects to a Guacamole server [46] on SCS that passes the commands for performing the desired
operations on the tool to the respective SRA over the ICE link. Any request made by a second user
to access the tool that is currently being used is declined.

A batch mode of tool invocation is similar to the interactive mode, except there is no
Guacamole session and the user cannot directly have a remote session on the computer executing
the batch commands. The input data, output folder, and the tool itself may be physically located
in separate geographical locations. After the user selects the tool, the communication that occurs
between the user’s browser and SCS is based on REST. The tool is invoked by SRA that copies
the input data to the machine running the tool, and the tool output is then copied to the output
folder identified by the user. At the end of this operation, SCS informs the user that the batch
invocation of the tool was successful. Similar to the interactive tools, the platform supports
multiple batch tools, hence allowing heterogeneity.

• Support for dynamic attaching and detaching of tools: A tool owner can make a tool available
temporarily to the collaborators if she or he wishes to. An “Attach” or “Detach” operation,
invoked through a GUI, enables or disables the access of the tool from the platform.

• Multitenancy: RP-SMARF supports the coexistence of multiple research communities
(collaboration teams) on the same platform. For example, two communities, the bridge-

17.8 MANAGEMENT OF SMART MACHINERY

FIGURE 17.7 Screenshot of SPPLASH: Displaying Animation of Bridge Vibration Obtained from RP-SMARF
(from Ref. [26])

334 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

management research community (Civil Engineers) and the industrial and aerospace machinery
research community (Mechanical and Aerospace Engineers), are the current users of the platform.
Each community has its own set of resources that are accessible only to the authorized members
of the respective community. Although both communities are hosted at the same time on RP-
SMARF, the GUI does not display the resources of one community to the other.

Multitenancy in RP-SMARF is achieved by object-model filtering performed by the control
server. Every user belongs to a community. This relationship between a user and the respective
community is represented in the object model through the user’s settings. When a request for
viewing available resources (eg, servers, data, tools) arrives on the system, the returned list is a
subset of all the resources filtered in such a way that only those resources that belong to the user’s
community are returned. The object model supports relationships between resources and their
respective “tag” objects, which are used to tag resources with additional metadata. The primary
use of the tags is to specify which community a resource or tool belongs to. The metadata for a
resource corresponding to the access rights for various users on the system is stored in another
object. This object is used for access control when a user requests to use a specific resource.

• Handling heterogeneous resources: RP-SMARF unifies a diverse set of network-enabled
resources that include virtual machines on a public cloud, dedicated compute servers, databases,
file servers, and software tools; it makes them accessible on demand to an authenticated user who
is authorized to use the respective resource. In addition to multiple resource types, the platform
supports multiple interactive and batch tools that reflect its capability to handle heterogeneous
resources.

RPSMARF currently supports resources for systems running under both Linux and Windows
Operating Systems (OSs). SRA requires the credentials for the machines, and logs in using SSH.
Even though the OS used by the remote resources is transparent to the user, SRA must know the
OS and issue suitable commands to invoke the tool requested by the user running the machine.
RPSMARF uses REST for communicating between SCS and the web client. Whenever a user
clicks on a button on the browser to perform any operation, the communication between SCS and
the web client is enabled using REST.

• Metadata searching: Metadata describes the data (eg, sensor data) to be analyzed. With hundreds
of data files containing sensor data collected periodically on a smart facility, an effective searching
of the datasets requires using domain-specific fields to search data. For example, metadata such
as wind speed and wind direction may be used to search for vibration data-files on a bridge.
All of the files containing vibration data that match the specified metadata ranges provided by
a researcher will be identified at the end of the search, thus avoiding a laborious manual search
by the researcher through all of the files collected on the bridge. In RP-SMARF, users define
metadata fields by using tools based on the Semantic Web Resource Description Framework
(RDF) [47]. SPARQL queries [48] generated through a GUI are run for a set of target files
identified by the researcher.

• Elasticity: RP-SMARF supports two types of tools: tools that can be virtualized and deployed on
a cloud, and tools that run on specific servers provided by the tool owner. The first class of tools
are said to be characterized by elasticity because a desired number of multiple instances can be
run on the cloud.

• Bulk data transfer: Using the bulk data transfer service, an authorized user can transfer data from
a source resource to a destination resource. RP-SMARF supports the transfer of one or multiple

335

files from one site to another. Firewalls that may be used at both source and destination are
effectively handled. This facility is used by the collaborators to exchange research data related to
smart facilities. Automatic movement of files to/from a server running a tool is performed when
the input and output data folders for the tool are located on different servers.

For performing a bulk data transfer, both the source and destination for the data are selected
by the user. Once the service is invoked in the user’s web browser, SCS receives the request via
REST and forwards it to the source SRA, which has access to the source data. A command is then
issued by the source SRA to transfer the data from the source data repository to SCS. SCS then
contacts the destination SRA that transfers the data to the destination data-resource, and the bulk
data transfer operation is completed.

• Streaming data-transfer: Continuous data produced by an industrial machine in a lab may need to be
analyzed by a tool that is located on a different site. The streaming data-transfer service enables the
transfer of data from a local or remote site to the server running the tool used for analyzing the data.

For conserving space, descriptions of other features that include tool/dataset discovery and resource
reservation could not be included. The interested reader is referred to [26].

The key components of the RP-SMARF system are shown in Fig. 17.8, and a short description of
these components is presented next. RP-SMARF uses an architecture based on an SCS. In addition

17.8 MANAGEMENT OF SMART MACHINERY

FIGURE 17.8 Key Elements of the RP-SMARF Architecture (from Ref. [26])

336 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

to executing the various services, it maintains a database of resource characteristics and their access
rights. The control server (SCS) can be scaled horizontally, when required for improving availability
and scalability. The control server stores all control information in an SQL database. A Python/Django
framework is used to manage the objects in the database, whereas communication with objects in the
Django framework is provided through REST APIs. The client providing a GUI through a browser is
implemented in JavaScript using the AngularJS framework. The remote agent has a file system inter-
face that facilitates user interaction with the system, and a job-running service used by the agent to start
and stop jobs. The Guacamole server is a web server that facilitates interactive GUI-based access to
resources through RDP for Windows-based systems, and via VNC for other systems. Further details of
the system are provided in [26].

17.9 CONCLUSIONS
This section summarizes the key issues discussed and concludes the chapter. The low cost and ready
availability of sensor technology is driving the incorporation of smarts in facility management. Exam-
ples of smart facilities include critical infrastructures such as sensor-based bridges and buildings, and
industrial machinery, whose performance and health are monitored remotely. The basic operations that
underlie the management of such smart facilities include: monitoring the state/health of the infrastruc-
ture with the help of sensors, analyzing the collected data, and making decisions on the management/
maintenance of the respective facility. Various resources are required for such smart-facility manage-
ment. These include compute resources for performing data analytics, storage resources for storing the
sensor data, archival data for describing the maintenance history of a given infrastructure, and software
tools for analyzing the sensor data. The underlying network that connects these various components
also plays an important role in smart facilities management.

This chapter concerns the use of clouds in the smart-facility management. Clouds can aid in the
management of smart facilities in multiple ways. A cloud is apt for unifying resources that may be
dispersed geographically to manage a smart facility. For example, a database containing archived data
capturing the maintenance history of a bridge and the software for processing that data may not be
colocated, so the cloud plays an important role in enabling the processing of the archived data by the
application software. Data-analytics programs based on a parallel-processing framework often require
multiple CPUs for processing. Virtual CPU instances provided by a cloud can provide the necessary
computing power for the efficient processing of the data. Two cloud-based case studies that demon-
strate the effectiveness of a cloud-based solution have been described in the chapter.

Smart-facility management is a multifaceted problem requiring the management of multiple re-
sources. The importance of the management of various types of resources that include sensor networks,
as well as computing and storage resources, has been discussed. Resource management on parallel sys-
tems processing MapReduce jobs with deadlines is important in the context of the real-time processing
of data collected on a facility being managed. Effective resource management algorithms that can be
deployed on such systems have been discussed.

17.9.1 FUTURE RESEARCH DIRECTIONS
Most of the discussion presented in this chapter concerned the management of a single smart fa-
cility. Techniques that can handle multiple facilities warrant investigation. Such a smart-facility

337REFERENCES

management system can amortize the cost of running and maintaining the management system
over multiple facilities, and is likely to be attractive to an entity providing services for multiple
smart buildings, or to a stakeholder owning multiple bridges, for example. Management of multiple
industrial machines running in the same factory is also a good candidate for such a multifacility
management system.

The capability of handling streaming data from sensors and performing streaming data-analytics
on individual streams, as well as fusing data streams coming from multiple sensors, may be required
in order to make decisions on the state/health of the respective facility. Incorporating such capabilities
into the cloud-based smart-facility management system is important.

A number of state-of-the-art techniques for the management of WSNs, and cloud-based platforms
for running data-analytics programs have been discussed. Advancing the state of the art in these areas
will be highly fruitful in the management of smart facilities. Adaptation of the algorithms presented
in [17] and [16] to WSNs with multiple heterogeneous clusters, comprising sensor nodes of different
characteristics, is worthy of research. One of the components of the SLAs associated with MapReduce
jobs is a set of estimates of task-execution times specified by the user. User estimates of task-execution
times can be error prone. Enhancing the existing resource management algorithms for handling errors
in user-estimated task-execution times is worthy of investigation.

ACKNOWLEDGMENTS
The author would like to thank Anshuman Biswas, Norman Lim, Navdeep Kapoor, and J. Orlando Melendez for
their help in preparation of the manuscript.

REFERENCES
 [1] Intel, <https://twitter.com/intelitcenter/status/601803967547465729/>; 2015.
 [2] Lau DT, Liu J, Majumdar S, Nandy B, St-Hilaire M, Yang CS. A cloud-based approach for smart facilities

management. In: Proceedings of the 2013 IEEE conference on prognostics and health management (PHM).
Gaithersburg, USA, 2013.

 [3] Colombo AW, Bangermann T, Kamouskos S, Delsing J, Stluka P, Harrison R, Jamees F, Martnez Lastra SL,
editors. Industrial cloud-based cyber-physical systems, the IMC-AESOP approach. USA: Springer; 2014.

 [4] Rajkumar R, Lee I, Sha L, Stankovic J. Cyber-physical systems: the next computing revolution. In: Proceedings
of the ACM design automation conference. Anaheim, USA, 2010.

 [5] Xianghan Z, Wenzhong G, Guolong e. Cloud-based monitoring framework for smart home. In: Proceedings
of the 4th IEEE International conference on cloud computing technology and science (CloudCom). Taipei,
Taiwan, 2012.

 [6] Ye X, Huang J. A framework for cloud-based smart home. In: Proceedings of the 4th IEEE international
conference on cloud computing technology and science (CloudCom). Athens, Greece, 2011.

 [7] Arconox, smart facility management solution, <http://archonox.com/uncategorized/
smartfacilitymanagementsolution/>; 2015.

 [8] Manager plus, maintenance management software, <http://www.managerplus.com/?utm_medium=
cpc&utm_source=google&cp1=DLeague&cp2=facilities_management&utm_term=facility%20
management&match>.

https://twitter.com/intelitcenter/status/601803967547465729
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0010
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0015
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0020
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0025
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0030
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0030
http://archonox.com/uncategorized/smartfacilitymanagementsolution/
http://archonox.com/uncategorized/smartfacilitymanagementsolution/
http://www.managerplus.com/?utm_medium=cpc%26utm_source=google%26cp1=DLeague%26cp2=facilities_management%26utm_term=facility%20management%26match
http://www.managerplus.com/?utm_medium=cpc%26utm_source=google%26cp1=DLeague%26cp2=facilities_management%26utm_term=facility%20management%26match
http://www.managerplus.com/?utm_medium=cpc%26utm_source=google%26cp1=DLeague%26cp2=facilities_management%26utm_term=facility%20management%26match

338 CHAPTER 17 CLOUD-BASED SMART-FACILITIES MANAGEMENT

 [9] Tham CK, Buyya R. SensorGrid: integrating sensor networks and grid computing. CSI Commun 2005;29(1):
24–9.

[10] Alamri A, Shadab Ansari W, Mehedi Hassan M, Shamim Hossain M, Alelaiwi A, Anwar Hossain M. A survey
on sensor-cloud: architecture, applications, and approaches. Intl J of Distrib Sensor Netw 2013;2013(6):
1–18.

[11] del Cid PJ, Michiels S, Joosen W, Hughes D. Middleware for resource sharing in multi-purpose wireless
sensor networks. In: Proceedings of the IEEE international conference on networked embedded systems for
enterprise applications (NESEA). Shuzou, China, 2010.

[12] Xu Y, Saifullah A, Chen Y, Lu C, Bhattacharya S. Near optimal multi-application allocation in shared sensor
networks. In: Proceedings of the eleventh ACM international symposium on mobile ad hoc networking and
computing (MobiHoc’10). Chicago, USA, 2010.

[13] Bhattacharya S, Saifullah A, Lu C, Roman GC. Multi-application deployment in shared sensor networks
based on quality of monitoring. In: Proceedings of the 16th IEEE real-time and embedded technology and
applications symposium (RTAS’10). Stockholm, Sweden, 2010.

[14] Lim HB, Lee D. An integrated and flexible scheduler for sensor grids. In: Proceedings of the 4th international
conference on ubiquitous intelligence and computing. Hong Kong, China, 2007.

[15] Yang T, Zhang S. Dormancy scheduling algorithm based on node’s self-adaptive density in WSN. In:
Proceedings of the 2009 5th international joint conference on INC, IMS and IDC (NCM’09). Seoul, Korea,
2009.

[16] Kapoor NK, Majumdar S, Nandy B. Techniques for allocation of sensors in shared wireless sensor networks.
J of Netw 2015;10(1):15–28.

[17] Kapoor NK, Majumdar S, Nandy B. System and application knowledge based scheduling of multiple
applications in a WSN. In: Proceedings of the IEEE international conference on communications (ICC
2012)—Ad hoc, sensor and mesh networking symposium. Ottawa, Canada, 2012.

[18] Udupi Y, Dutta D. Business rules and policies driven constraints-based smart resource placement in Openstack.
White Paper. Cisco.

[19] Apache software foundation, Hadoop, <http://hadoop.apache.org/>.
[20] Kc K, Anyanwu K. Scheduling Hadoop jobs to meet deadlines. In: Proceedings of the international conference

on cloud computing technology and science (CloudCom). Indianapolis, USA, 2010.
[21] Dong X, Wang Y, Liao H. Scheduling mixed real-time and non-real-time applications in MapReduce

environment. In: Proceedings of the international conference on parallel and distributed systems (ICPADS).
Tainan, Taiwan, 2011.

[22] Verma A, Cherkasova L, Kumar VS, Campbell RH. Deadline-based workload management for MapReduce
environments: pieces of the performance puzzle. In: Proceedings of the network operations and management
symposium (NOMS). HI, USA, 2012.

[23] Madsen P. Authentication in the IoT—challenges and opportunities, SecureID news, <http://www.
secureidnews.com/news-item/authentication-in-the-iot-challenges-and-opportunities/>.

[24] Liu J, Xiao Y, Chen CLP. Authentication and access control in the Internet of Things. In: Proceedings of the
32nd international conference on distributed computing systems workshops. Macao, China, 2012.

[25] Crossman MA, Liu H. Study of IoT with authentication testbed. In: Proceedings of the 2015 IEEE international
symposium on homeland and security (HLS). Waltham, USA, 2015.

[26] McGregor A, Bennett D, Majumdar S, Nandy B, Melendez JO, St-Hilaire M, Lau DT, Liu J. A cloud-based
platform for supporting research collaboration. In: Proceedings of the 8th IEEE international conference on
cloud computing (CLOUD). New York, 2015.

[27] Majumdar S, Asif M, Melendez JO, Kanagasundaram R, Lau DT, Nandy B, Zaman M, Srivastava P, Goel
N. Middleware architecture for sensor-based bridge infrastructure management. In: Proceedings of the 15th
communications and networking symposium. Boston, USA, 2012.

[28] Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: vision,
hype, and reality for delivering computing as the 5th utility. Future Gener Comput Syst 2009;25(6):599–616.

http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0035
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0040
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0045
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0050
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0055
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0060
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0065
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0070
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0075
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0075
http://hadoop.apache.org/
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0080
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0085
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0090
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0090
http://www.secureidnews.com/news-item/authentication-in-the-iot-challenges-and-opportunities/
http://www.secureidnews.com/news-item/authentication-in-the-iot-challenges-and-opportunities/
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0095
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0100
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0105
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0110
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0115
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0115

339REFERENCES

[29] Lim N, Majumdar S, Ashwood-Smith P. Constraint programming-based resource management technique for
processing MapReduce jobs with SLAs on clouds. In: Proceedings of the international conference on parallel
processing (ICPP). Minneapolis, USA, 2014.

[30] Huang J-D, Hsieh HC. Design of gateway for monitoring system in IoT networks. In: Proceedings of the 2013
IEEE international conference on green computing and communications and IEEE Internet of Things and
IEEE cyber, physical and social computing. Beijing, China, 2013.

[31] Jianguo X, Gang X, Mengmeng Y. Monitoring system design and implementation based on the Internet of
Things. In: Proceedings of the 2013 fourth international conference on digital manufacturing and automation.
Qingdao, China, 2013.

[32] Kanagasundaram R, Majumdar S, Zaman M, Srivastava P, Goel N. Exposing resources as Web services:
a performance oriented approach. In: Proceedings of the 2012 international symposium on performance
evaluation of computer and telecommunication systems (SPECTS’12). Genoa, Italy, 2012.

[33] Dean J, Ghemawat S. MapRedutd: simplified data processing on large clusters. In: Proceedings of the 6th
symposium on operating system design and implementation. San Francisco, USA, 2004.

[34] Chang H, Kodialam M, Kompella RR, Lakshman TV, Lee M, Mukherjee S. Scheduling in MapReduce like
systems for fast completion time. In: Proceedings of the IEEE, INFOCOM conference. Shanghai, China,
2011.

[35] Lim N, Majumdar S, Ashwood-Smith P. Engineering resource management middleware for optimizing the
performance of clouds processing MapReduce jobs with deadlines. In: Proceedings of the 5th ACM/SPEC
international conference on performance engineering (ICPE). Dublin, Ireland, 2014.

[36] LINDO systems inc, LINGO 13.0: user’s guide, USA; 2011.
[37] IBM, IBM ILOG CPLEX optimization studio, <http://www-03.ibm.com/software/products/us/en/>; 2014.
[38] Apache software foundation, Apache Storm, <https://storm.apache.org/>; 2015.
[39] Lohrmann B, Warneke D, Kao O. Nephele streaming: stream processing under QoS constraints at scale.

Cluster computing 2014;17(1):61–78.
[40] Lohrmann B, Janacik P, Kao O. Elastic stream processing with latency guarantees. In: Proceedings of the

IEEE 35th international conference on distributed computing systems (ICDCS). Columbus, USA, 2015.
[41] Mirza S. Infrastructure durability and sustainability. In: Proceedings of the 2005 Canadian society of civil

engineering annual conference. Toronto, Canada, 2005.
[42] American society for civil engineers. Engineers give U.S. infrastructure a “D”, seek $2.2 trillion in stimulus:

ASCE 2009 infrastructure report card. Popular Mechanics, New York, USA; 2009.
[43] Rosenberg J. Internet engineering task force (IETF) request for comments: 5245, <https://tools.ietf.org/html/

rfc5245/>; 2015.
[44] Melnikov A, Fette I. Internet engineering task force (IETF), request for comments: 6455, <https://tools.ietf.

org/html/rfc6455/>.
[45] Desjardins SL, Londono NA, Lau DT, Khoo H. Real-time data processing, analysis and visualization for

structural monitoring of the confederation bridge. Adv in Structural Eng 2006;9(1):141–57.
[46] Jumper M. Guacamole manual, <http://guac-dev.org/doc/gug/guacamole-architecture.html/>.
[47] W3C, resource description framework, <http://www.w3.org/RDF/>; 2015.
[48] W3, SPARQL query language for RDF, <http://www.w3.org/TR/rdf-sparql-query/>.

http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0120
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0120
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0120
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0125
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0125
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0125
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0130
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0130
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0130
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0135
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0135
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0135
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0140
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0140
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0145
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0145
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0145
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0150
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0150
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0150
http://www-03.ibm.com/software/products/us/en/
https://storm.apache.org/
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0155
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0155
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0160
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0160
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0165
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0165
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0170
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0170
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0175
http://refhub.elsevier.com/B978-0-12-805395-9.00017-4/ref0175
http://guac-dev.org/doc/gug/guacamole-architecture.html
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/

Page left intentionally blank

341

Index

A
Abstracted location data, 53
Academics, 226
Access-control mechanisms, 37
Accountability mechanisms, 221, 230, 235
Acknowledgement, 85
ACK signal, 214
Acontis Technology, 110
Ad hoc On-Demand Distance Vector (AODV) routing, 307
Advanced Encryption Standard (AES), 187
Advanced Message Queuing Protocol (AMQP), 264,

292, 293
broker, 292
compatible server, 292

Advance reservation (AR), 331
Agent, 51
Alarm servitd, 323
Amazon EC2 service (t2.micro), 129
Amazon Elastic MapReduce and Microsoft HDInsight, 294
Amazon S3, 42
Amazon’s Elastic Compute Cloud (EC2), 49, 135
AMQP. See Advanced Message Queuing

Protocol (AMQP)
Analog to Digital-Converter (ADC), 281
Android device, 57
Anomalies, types of, 167
Anomaly detection, 165–167

capability, 178
clustering ellipsoids, 169–172
experimental results, 172–173
hyperellipsoidal, 168–169
techniques, uses rule-based methods, 166

ANSI C standard, 80
Apache ActiveMQ, 292
Apache Hadoop, 294
Apache Qpid, 292
Apache STORM, 294
Apache Storm, 150
API-oriented architecture, 9
Apple, 300
Apple’s iCloud, 50
Application binary interface (ABI), 105
Application Component Sharing, 52, 55
Application layer, 203
Application Programming Interface (API), 331
Applied IoT

architecture overview, 278–279
cloud or not to cloud, 294–295

data transmission, 290
advanced message queuing protocol (AMQP), 292
backend processing, 293–294

gateway, 286
hardware, 287–289
software, 289–290

key requirements, 277
overview of, 277
scenario, 278
sensor, 283–285

to gateway communication, 279
wired gateway interfaces, 280–282
wireless gateway interfaces, 282–283

Appropriate encryption techniques, 247
Archival databases, 332
Arduino UNO development board, 288
ARM9 processor-based gateway, 324
ARM processors, 6, 107, 290
ARPANET, 3
AS3935 Franklin lightning sensor, 285
ASTM Standard E2213-03, 305
ATmega328, 285
Attacks

capture, 185
Denial-of-Service (DoS), 185
Man-In-The-Middle (MITM), 242, 245
replay, 185
on sensor networks, 191

Authenticated Key Exchange (AKE) protocol, 244
Authentication protocol, 244
Automatic image/speech recognition, 54
Autonomously, 51

power-grid management system, 209
Autonomy, 260
Availability, 201

B
Baidu, 300
Balanced Metric Allocation (BMA), 326
Basic Service Set (BSS), 304
Battery-powered TelosB, 254
Bellare-Canetti-Krawczyk protocol (BCK), 245
Benchmark completion time, 117

Guests, 115
Hosts, 114, 116

Big Data analysis, 5, 12, 61, 294
analytics platform, 71

342 Index

Big Stream, 61
Binding Law, 220
Bluetooth

enabled devices, 3, 15, 18, 197
logical link control and adaptation protocol

(L2CAP), 189
Bluetooth Low Energy (BLE) technology, 185, 282
Bluetooth Smart, 197

device address, 189
device protocol stack, 189

Boolean expressions, 265
Bring your own device (BYOD) problem, 224
Broadcast-based information dissemination, 303
Broader participation, 221
B4UFLY, 232
Building automation systems (BASs), 228
Building scenario, 240
Bulk data transfer, 334
Business Process Model and Notation (BPMN), 66

C
C, 87
C#, 83
C++, 83, 87
Caching server cost/unit, 44
Calculating similarities, between ellipsoids, 171
Callback service, 38
Canadian Network for the Advancement of Research,

Industry and Education (CANARIE), 332
Capture attacks, 185
CarTALK 2000, 309
Case study

management of sensor-based bridges, 330–331
research collaboration platform

for management of smart machinery, 331–335
CDMA, 15
Centralized cloud servers, 62
Centralized stream data, 154
Certification Authority (CA), 195, 241
Characteristic matrix, 168
Choreography, 87
Cisco, 6, 70

Data in Motion (DMo), 71
Cisco Systems Inc., 184
C language, 80
Clock stretching, 280
Clojure, 156
Clone-ID attack, 191
Cloud-assisted cyber-physical systems (CPS)

architecture for deploying, 130–132
MicroVMs. See Micro virtual machines

(MicroVMs)

possibilities of IoT, extending, 132–133
smart objects, path between, 133

Cloud-assisted remote sensing (CARS), 130
CloudAware, 68
Cloud-based back-ends, 79
Cloud-based smart-facilities management, 322

background, 320–321
case study

management of sensor-based bridges, 330–331
research collaboration platform

for management of smart machinery, 331–335
future research directions, 336–337
middleware services, 323–325
overview of, 319
resource management techniques

for supporting data analytics, 328
streaming data analytics, 329

wireless sensor networks, 325
request scheduling, 327
sensor allocation, 326

for smart-facility management, 321–322
Cloud computing

Internet of Things (IoT), 13, 15
number of tuples reaching, 74

Cloud Computing Infrastructure, 33
Cloud Link, 72
Cloud of Things (CoT), 103

virtualization, 103. See also Virtualization, embedded
boards for cloud of things

Cloud-provider market, 295
Cloud4Sens, 129
CloudSim, 73
Cloud vs. Fog, 15
CLPS. See Continuous logic processing system (CLPS)
CLPS implementations, 155
Clustering ellipsoids, 171
Clustering techniques, 166
CoAP. See Constrained Application Protocol (CoAP)
Code obfuscation, 265, 269
Code offloading, 11
Collisions avoidance system (CAS), 309
COMET, 12
Common microcontroller details, 287
Communication layer, 203
Communication links, 262
Communication protocols, 263

Internet of Things (IoT), 15
network layer, 16
transport/application layer, 16–18

Communication security, 265
Complex event processing (CEP), 150

use-cases of stream processing, 150
Compose API, 93

343Index

Computational complexity, 173
Computational REST (CREST), 85
Computation offloading, 68. See also Code offloading
Computer Emergency Response Teams, 223
Computing devices, 206
Confidentiality, 185
Connected dominating set (CDS), 308
Constrained Application Protocol (CoAP), 80,

130, 243, 262
layers, 86
proposes, 188, 189, 260, 262
protocols, 18

Constrained devices, two-way authentication
design decisions, 243–244
device classes, 240
overview of, 239
security aspects/solutions, 241–243

Constrained RESTful Environments (CoRE), 85, 188
Constraint programming (CP), 328
Container-based virtualization, 107
Containers, 10
Content Distribution Network (CDN), 14
Context-aware proactive suggestion, 54
Contiki, 260
Continuous logic processing system (CLPS), 154

evolutionary history of, 155
state-of-the-art, 158

Control Channel (CCH), 305
Control channel interval (CCHI), 306
Controller Area Network (CAN), 281
Convolutional Neural Networking (CNN), 57
Cooccurrence analysis engine, 54
Cooperative collision avoidance systems (CCAS), 309
Cooperative Video Streaming over Vehicular Networks

(CVS-VN), 312
Coordination, 91
CoRE Link Format, 12
Co-SVC-MDC, 312
CoT. See Cloud of Things (CoT)
CppLINDA, 87
C programming language, 260
CPS. See Cloud-assisted cyber-physical systems (CPS)
CPU-intensive data, 319
CPU Load Balanced Allocation (CLBA), 326
CPU resources, 109
Critical Internet resources, 223
Cryptography, 268

algorithms, 20
challenges, 242

CubieTech Cubieboard2 SoC, 112
Current IoT architectures, 195
Cyber-physical systems (CPS), 126, 320

domotic system, 139–140

D
Data anonymization, 196
Data as a Service (DaaS), 104
Database approach, 91
Data Base Management Systems (DBMS), 155
Data Distribution Service (DDS), 262, 264, 292

DDS 2.0, 71
Data Element–Time pair, 148
Data encryption, 286
Datagram Transport Layer Security (DTLS), 188
Data Obfuscation, 52
Data persistence, 286
Data privacy, 207
Data-processing capability, 286
Data reliability. See Reliability challenges
Datasets

anomaly detection capability, 178
evaluation results for, 174
normal distributions used to generate synthetic datasets, 177

Data stream management system (DSMS), 149
use-cases of stream processing, 150

Data-transfer servitd, 323
Data transmission, 157, 290

advanced message queuing protocol (AMQP), 292
backend processing, 293–294

dd, 113
DDS. See Data Distribution Service (DDS)
Deep Learning (DL), 57
Deep Neural Network (DNN) model, 58
Delay/Disruption Tolerant Network (DTN), 308
Denial-of-Service (DoS) attacks, 185
Deployment-specific concepts, 97
Destination sequence number (DestSeqNum), 307
DETECT_TRAFFIC_INCIDENT, 72
Development language, 157
Device binding, 55
Device classes, 240
Device/cloud collaboration

applications of, 54
context-aware proactive suggestion, 54–55
image/speech recognition, 57–58
semantic QA cache, 56

framework, 49
background, 49–50
high-level layout, 51
powerful smart mobile devices, 50
privacy-protection solution, 52–54
runtime adaptation engine, 51–52

future work, 59
Device/cloud discovery, 51
Device/Cloud Selection module, 51, 55
Device-collaboration framework

high-level layout of, 55

344 Index

Device-collecting sensor, 247
Device Communication layer, 98
Device discovery, 55
Device security, 287
Devices to the servers (D2S), 264
Device-to-device (D2D), 261
Dialog Manager (DM) module, 56
Digital shadows, 196
Digital Signal Processing (DSP), 286
Digital video recorder (DVR) cameras, 270
Directory service, 33
Disc I/O bandwidth, 120
Distributed anomaly detection

by clustering ellipsoids, 169
technique, 165

Distributed data analysis framework, for IoT
anomaly detection, 165–167

clustering ellipsoids, 169–172
experimental results, 172–173
hyperellipsoidal, 168–169

definitions, 168
efficient incremental local modeling, 173

experimental results, 176–178
incremental updates, 175–176
incremental updates, implementation, 176

overview of, 163
preliminaries, 163–164
problem statement, 168

Distributed Hash Table (DHT), 95
Distributed stream data, 154
Diversification, 266, 267
Docker, 10
DODAG root, 190
Domain-specific concepts, 97
Domotic, cyber-physical system, 139–140
DomU, 119
Drone control, 232
dsync flags, 118
DTLS-based solution, 242
Dynamic C, 82
Dynamic voltage and frequency scaling (DVFS), 215

E
Earliest Deadline First (EDF) strategy, 321
Ecobee Inc., 6
e-Commerce, 183
Edge computing, 184
Edge devices, 62
Edge layer, 14
Efficient data-transmission packet size, 292
Efficient incremental local modeling, 173

experimental results, 176–178

incremental updates, 175–176
incremental updates, implementation, 176

eHealth, 18, 135
CPS Architecture, 136

EJB container, 212
Electronic interface, 286
eLinda model, 87
ELIoT’s virtual machine, 93
Ellipsoidal clustering method, 173
Elliptic Curve Cryptography (ECC), 187, 241

192-bit, 241
Elliptic Curve Integrated Encryption Scheme (ECIES)

cipher texts, 253
Email, 126
Embedded device programming languages, 80. See also

Virtualization, embedded boards for cloud of things
B#, 83
Dynamic C, 81–82
Keil C, 81
nesC, 81

Embedded devices, limitation, 269
Embedded RPC (ERPC), 84
Embedded systems, operating systems for, 261
Embedded Virtual Machine (EVM), 83
Encrypted location data, 53
Endomondo, 62
End-to-end communication, 241
End-to-end Security, 193, 239
End-to-end tuple delay, 73
End-user application, 97
Energy consumption

cryptographic operations, 254
radio transmission, 253

Energy Consumption of Composite Operations, 252
Energy efficiency, 269
Energy efficient reliability (EER), 207
Enhanced Distributed Channel Access (EDCA), 305
Enterprise network management system, 220
Enterprise Service Bus (ESB) services, 8
Erlang language, 92
Error detection, 208, 211

exception handling, 212
Heartbeat, 212
recovery through restart, 212
Watchdog, 211

ESX, 107
Ethernet connections, 278
Event Condition Action (ECA) rules, 147
Event processing language (EPL), 156
Extended BCK protocol, 246
Extensible Authentication Protocol (EAP), 188
Extensible Messaging and Presence Protocol (XMPP), 264

345Index

F
Facebook, 49

profile, 192
FactoryTalk AssetCentre, 70
Farthest Number Distance Product (FNDP), 327
Fault prevention, 208, 213

communication reliability, improving, 214
data quality vs. energy usage, 216
failure prediction, 213
failure prevention, by service platform, 214
improving energy efficiency, 215

communication power management, 215
device power management, 215
service platform, 215

service degradation support, 214
Fault tolerance, 91, 206, 208
Field-programmable gate arrays (FPGAs), 147
File transfer, 126
Fleet management systems (FMS), 228
Fog Computing, 14, 15, 63, 67, 69, 184

applications, 66
augmented reality, 66–67
caching and preprocessing, 68
healthcare, 66

architecture, 15
case study, 72

network topology/data sources, 73
performance evaluation

average tuple delay, 73
core network usage, 74

commercial products, 70
CISCO IOx, 70
data in motion, 71
LocalGrid, 71
ParStream, 71
PRISMTECH VORTEX, 71–72

definitions/characteristics, 63–64
Internet of Things (IoT), 61
motivation scenario, 62
reference architecture, 64–66
research directions/enablers, 68

energy minimization, 70
programming models, 68–69
resource management, 69
security and reliability, 69

Fog devices, 69
Fog resources, 64
Ford MyKey, 232
4G, 15
FP7 OpenIoT Project, 31
FreeBSD Jails, 107
Fujitsu, 6

Full virtualization, 106
Functionality-specific concepts, 97
Future proof, 287

G
Gateway Agent (GWA), 330
Gaussian distributions, 172
Geiger counter board, 285
General Purpose Input Output (GPIO), 281

pin, 284
Generic coordination mechanisms, 314
Generic Interrupt Controller (GIC) architecture, 107
Generic pointers, 81
Geographical communication, 301
Geographic Information System (GIS), 138
Get available services, 36, 40
Get service status, 40
Global ellipsoidal boundaries, 170
Global elliptical boundary, 173
Global Positioning System (GPS) information, 239
Global Scheduler, 33
Global Scheduler component, 35–40
GNU/Linux distribution, 129
Google, 6, 49, 300
Google Cloud Data-Store, 42
Google Glass devices, 67
Google Maps, 147
Google Trends, 7
Google Voice API, 56
Governing Internet of Things, 226–228

background/related work, 221
enterprise network management, 224
existing approaches, 230–233
future research directions, 234–235
governance models, 229
important governance issues, 229–230
integrated governance idea, 229
Internet, 219

governance, 222–224
management versus governance, 225
overview of, 219, 228–229
problem solving, 233
surveillance, 225–226
well-defined IoT governance framework, 220

GovOps (Governance and Operations), 228
rtGovOps, 228

GPIO. See General Purpose Input Output (GPIO)
GPS devices, 52, 299

sensors, 62, 202
signal, 152

Graphical user interface (GUI), 325
Guacamole server, 335

346 Index

H
Handshake message, 249
Hard delay constraints, 302
HDInsight, 295
Healthsense eNeighbor, 19
Heartbeat, 211
HELLO message, 191
Heterogeneity, 91, 264
Heterogeneous hardware constraints, 260
Hierarchical Data Sandboxing module, 52
High reliability requirements, 302
HIGh security and lightweigHT (HIGHT), 194
Homogeneous environments, 164
Homomorphic encryption, 196
Host Identity Protocol (HIP), 188
hsType, 249
HTML components, 68
HTTP/TCP stack, 68, 85, 331
Huawei, 300
Human-to-machine, 7
Human-with-environment interactions, 7
HVAC system, 219
Hyperellipsoidal model, 164, 168
Hypervisors, 107
Hyp mode, 107

I
IaaS, 104

cloud, 12
IBM, 6
IBRL dataset, 173
IBRL Wireless Sensor project, 172
I2C. See Inter-integrated circuit (I2C)
Identity management, 21
IEEE 802.11p, 300
IEEE 802.11’s frequency band, 304
IEEE 1609 standard family, 306
IEEE 802.11 Standards, 303

network architecture, 304
IETF-COAP-compliant sensors, 32
IKEv2/IPSec, 188
ImageNet-1000 model, 57
Image-recognition problem, 58
Impedance mismatch, 205
Incident detection, 72
In-depth knowledge, of electronics/computer science, 277
Industrial IoT (IIoT), 5
Industry-focused applications, 18
Industry representatives, 226
Information and communication technologies (ICT), 125
Information dissemination, 307

broadcast-based, 303

Information intermediation, 223
Information technology (IT) legislations, 220
Infrared, 283
Infrastructure as a Service (IaaS), 29, 133
Infrastructure level, 213
Inner integrated circuit (I2C), 190
In-network processing, 94
INSTEON, home-automation technology, 283
Instruction set architecture (ISA), 105
Integrated Encryption Scheme (IES), 244
Intel, 6
Intel IOT gateway, 211
Intelligence applications, 50
Intelligent intersection control algorithms, 310
Intelligent transportation systems (ITS), 299
Intent-based programming model, 98
Inter-integrated circuit (I2C), 285

serial-communication buses, 279, 280
Intermediate Physical Addresses (IPAs), 107
Internal network virtualization, 122
Internet Engineering Task Force (IETF), 262
Internet governance, 222
Internet IP diagram, 263
Internet Key Exchange (IKEv2), 192
Internet of Everything (IoE), 5, 7
Internet of Nano Things (IoNT), 6
Internet of Things (IoT), 3

API-oriented architecture, 9
applications, 18

business process/data analysis, 19
information gathering/collaborative consumption, 19
monitoring/actuating, 18
taxonomy of, 309

architecture key components, 279
authentication, 21
based system, 202, 215
cloud computing, 13
cloud convergence, 30
communication protocols, 15

comparison, 17
data management and analytics, 12
device-certification, 278
ecosystem, 4
emergence, 5
human-to-machine, 7
human-with-environment interactions, 7
identification and resource/service discovery, 12
impact on quality of life and businesses, 7
IoT-i project, 8
machine-to-machine, 7
market share, 6
message persistence, 292
network layer, 16

347Index

OAS service, 193
privacy, 21
Quality of Service (QoS)

resource management, 10
real-time analytics, 14
reference architecture, 7, 8
related projects, 20
resource partitioning, 10
security, 19–20
services lifecycle, 35–40
smartness, 5
software diversification, 259
standardization and regulatory limitations, 22
standards, 22
taxonomy of resource management, 11
trend forecast, 6
vehicle management system, 207
weather-station device, 297

Internet of Things Architecture (IoT-A), 6
Internet of Vehicles (IoV)

applications, 308
driving safety related, 309
infotainment services, 312–313
transportation efficiency related, 310

cooperative driving, 311
intersection control, 310–311
parking navigation, 311
route navigation, 311

background/concept, 299
basics of, 299
broadcasting/information dissemination, 307

V2R based, 308
V2V connections, 307–308

characteristics/challenges, 301, 302
delay/disruption tolerant network (DTN), 308
enabling technologies, 303

IEEE 802.11, 303–304
IEEE 802.11p/WAVE, 304–306
MAC protocols/standards, 303

future directions, 313–314
network architecture, 299, 300

connections, 300
servers/clouds, 301
vehicles, 300

routing protocols, 306
Ad hoc On-Demand Distance Vector (AODV)

routing, 307
Multihop-MAC Protocol (IEEE 802.11s), 307
Optimized Link State Routing Protocol (OLSR), 307

Internet protocol (IP), 183
Internet Protocol Service Profile (IPSP), 189
Internet standards, 223
Interrupts translation, 110

IoT. See Internet of Things (IoT)
IoT European Research Cluster (IERC), 6
IoV. See Internet of Vehicles (IoV)
IP-connected sensor networks, 190
iPerf3, 113
IPSec, 189
IPSec Internet Key Exchange (IKE) protocol, 189
IP security protocols (IPSec), 188
IP technologies, 187
IPV4, 260
IPV6, 7, 260
IPv6 over Low-Power Wireless Personal Area Networks

(6LowPAN), 188, 282
networks, 190, 263
protocols, 18
standard, 189

IPv6 Routing Protocol, 18, 183, 262
ISO/OSI model, 188

J
Java, 83, 87, 156
Java Orchestration Language Interpreter Engine (Jolie), 88
J2EE system, 212
JSON, 262

K
Kernel-based Virtual Machine (KVM), 107, 108

arm virtualization, 108
guest, 119

K-means clustering, 173
Knowledge discovery in databases (KDD), 13
KVM. See Kernel-based Virtual Machine (KVM)

L
Large-scale network, 301
Latency-sensitive applications, 91
Layered architecture reference model, 203
Least Weighted Farthest Number Distance Product First

(LWFNDPF) algorithm, 327
Light SOS (SOSLite), 135
Lightweight cryptography, 194
Light-Weight Implementation Guidance (LWIG), 188
Lightweight models, 58
Lightweight Remote Procedure Call (LRPC), 84
Linked Data Cloud, 33
Linux Containers (LXC), 10, 109
Linux VServer, 10, 109
Little Data, 61
LND712 Geiger tube, 285
LocalGrid’s Fog Computing platform, 71
Local Scheduler component, 33

348 Index

Logistic Regression, 51
Low-latency requirement, 64
Low power and Lossy Networks (LLNs), 262
LSM/W3C SSN repository, 41
LXC container, 107, 119
LynuxWorks, 110

M
Machine reference model, 106
Machine to machine (M2M), 7, 126

communication, 5, 52
interactions, 30

Macro programming, 92
Malicious software. See Malware
Malware, 265
Man-In-The-Middle (MITM) attacks, 242
MapReduce, 65, 145, 321, 328, 329
Masquerading, 185
Master Input, Slave Output (MISO), 280
Master Output, Slave Input (MOSI), 280
Maximum Transmission Units (MTU), 188
Mbed platform, 289
Mean time to failure (MTTF), 201
Memory consumption

of components, 251
TinyECC optimizations, 251

Memory footprint, 118
Memory-specific pointers, 81
Memory-writing time performances, 117
Mesh Station (mesh STA), 307
Message-passing models, 100
Message Queue Telemetry Transport (MQTT), 189, 264, 292
Messaging and Presence Protocol (XMPP), 292
Metadata searching, 334
Microbatch, 149
Micro-kernel architecture, 212
Microkernel-based solutions, 10
Microprocessor, 287
microSD performance, 118
Microsoft, 6
Microsoft Azure Service Bus, 292
Microsoft’s Azure, 49
Microsoft Windows 10 IoT platform, 289
Micro virtual machines (MicroVMs), 128, 129

future research directions, 140
implementation, 135
IoT architecture, for selected use cases, 135

cyber-physical domotic system, 139–140
eHEALTH, 136–137
precision agriculture (PA), 137–139

overview of, 125–128
sensor observation service, 133–135

MicroVMs. See Micro virtual machines (MicroVMs)
MiLAN project, 214, 215
MIT’s Auto-ID Center, 5
Mixed Integer Linear Programming (MILP), 328
M2M. See Machine to machine (M2M)
M2M communication, 17

publish/subscribe model, 17
M2M platform, 13
Mobile Adhoc Networks (MANET), 15
Mobile Edge Computing (MEC) programming framework, 68
Mobile Fog, 92
Mobile IPv6, 312
Mobile networks, 15
Mobility, 264
Model-driven development, 92
Modular composition, 103
Moore’s Law, 125
MQ Telemetry Transport (MQTT) protocol, 87, 262
msgType, 249
MSMs. See Multistakeholder models (MSMs)
Multicultural behavior, 269
Multidimensional data distribution, 164
Multi-Point Relay (MPR) technique, 307
Multistakeholder models (MSMs), 222

in internet governance, 222
MyKey, 232

N
Named data networking (NDN), 314
Namespaces, 109
National Automated Vehicle Identification System (Siniav),

299
National Institute of Standards and Technology (NIST), 243
Natural Language Understanding (NLU) module, 56
.NetMF platform, 289
Network bandwidth performance, 121
Network-communication speed, 15
Network-enabled devices, 205
Network layer, 16
Network neutrality, 223
Network routers, 14
Network smartness, 5
Network traffic, reduction of, 63
New South Wales (NSW), 45
NGINX, 135
NLANR/DAST (National Laboratory for Applied Network

Research, Distributed Application Support Team), 113
Node-centric programming, 91
Non-confirmable messages, 85
Nonhomogeneous environments, 164, 170
NoSQL databases, 145
NOSQL REST APIs, 65

349Index

O
OAuth (Open Authorization) protocol, 192, 196
Obfuscation/diversification, for securing IoT, 259

code obfuscation, 265
distinguishing characteristics, 260

network stack/access protocols, 261–264
operating systems and software, 260–261
security and privacy, 264–265

diversification, 266, 267
enhancement, 267–268
proposed ideas, motivations/limitations of, 268–270
software, different use-case scenarios, 270–271

Object smartness, 5
Observations & Measurements Schema (O&M), 134
On-line conversations, 126
Online financial transactions, 183
On-site, with cloud provider, 295
Open Geospatial Consortium (OGC), 134
OPENIoT architecture

future research directions, 46
for IoT/cloud convergence, 32–35

cloud computing infrastructure, 33
configuration and monitoring component, 34
directory service, 33
global scheduler, 33
local scheduler component, 33
request definition tool, 34
sensor middleware, 32
service delivery and utility manager, 34

validating applications, use cases, 45
OpenIoT infrastructure, 42
OpenIoT Open Source Project, 31, 36
OpenIoT platform, 33, 34, 38
OpenIoT scheduler, 41–42
OpenIoT services lifecycle, state diagram of, 35
OpenMTC core, 9
Open-source image-classifier (OpenCV), 57
Open source semantic web infrastructure, 29

background/related work, 30–31
OpenSSL X.509 RSA-1024 certificate, 243
OpenSynergy, 110
OpenVZ, 10, 107
Operation control, 219
“|” operator, 89
Optimization algorithms, 41–42
Optimized Link State Routing Protocol (OLSR), 307
Oracle VM Server, 107
OS-level real-time virtualization, 112

P
PA. See Precision agriculture (PA)
PaaS, 104

Paravirtualization, 106
PatRICIA proposes, 13, 98
Peer-2-peer paradigm, 300
Performance monitoring, 132
Performance prediction, 65
PHP, 135
Physical addresses (PAs), 107
Physical-sensing devices, 32
Physical unclonable functions (PUF), 323
Platform as a service (PaaS), 29
Platform capability, 289
Platform for privacy preferences (P3P), 231
Point of interest (POI), 52
Policy makers, 226
Polyglot programming, 80, 89, 90
Poly-paradigm programming (PPP), 89
Population covariance matrix, 168
Population mean, 168
Precision agriculture (PA), 137

CPS architecture, 138
Predictable mobility, 302
Predictive analysis, 54
PRESENT, 194
Presentation system, 154
Preshared keys (PSK), 241
Printed Circuit Board (PCB), 280
Privacy-enhancing technologies, 21
Privacy-protection mechanism, 50
Proactive Suggestion (PS), 54

high-level layout of, 54
Production version, 277
Program bugs, 266
Programmability, 260, 286
Programmable Matching Engine (PME), 87
Programming frameworks

background, 80
coordination languages, 87

eLinda, 87
Jolie (Java Orchestration Language Interpreter Engine),

88–89
Linda, 87
Orc, 88

embedded device programming languages, 80
B#, 83
Dynamic C, 81–82
Keil C, 81
nesC, 81

existing IoT frameworks, 92
Calvin, 95–96
Compose API, 93–94
distributed dataflow support, 94
Dripcast, 94–95
Erlang Language for IoT (ELIoT), 92

350 Index

high-level application development, 97
mobile Fog, 92
mobile fog, 92
PatRICIA, 98
PyoT, 94
Simurgh, 96–97

future research directions, 100
highlights, 99
IoT devices, 79
IoT programming approaches, 91–92
IoT survey, 91
message passing in devices, 83

CoAP, 85–87
REST, 84–85
RPC, 83

Polyglot programming, 89–90
Proportionality, 230
Protocol for Carrying Authentication for Network Access

(PANA), 188
Public-Key Cryptography (PKC), 243

asymmetric, 195
Public-Key Infrastructure (PKI), 187
Pulse-Width Modulation (PWM), 280
PyoT Worker Node, 94
Python/Django framework, 156, 289, 335

Q
QoS. See Quality of Service (QoS)
QoS 0.9, 214
Quality of experience (QoE), 51
Quality of information (QoI), 215, 216
Quality of Service (QoS), 10, 157, 329

resource management, 10

R
RabbitMQ, 292
Radio Frequency Identification (RFID), 3, 29

tags, 186, 239
Radio transmission, energy consumption, 253
Raw-data management, 65
RC4, 268
Real-time alarms, 147
Real-time constraints, 121
Real-time operating system (RTOS), 110
Real-time processing, 14
Real Time Systems GmbH, 110
Received Signal Strength Indicator (RSSI), 93
Record utility usage, 40
Recovery oriented computing (ROC), 202
Registered service status, 36
Register service process flowchart, 37

Reliability challenges, 104, 201
device level, 206–207
interoperability of devices, 207
at network level, 206
privacy, 207
serviceability of IoT system, 206
service available to user, 205

Reliability issues
addressing, 208

graceful degradation, 209
performability model, 211
software design, 210

nullifying impact of fault, 208–209
redundancy

M2M topology, 209
in service platform design, 209

different categories, of applications, 203
error tolerant, 204
restartable, 204
zero tolerance, 203

due to energy constraint, 207
FtabFailure SCENARIOS, 204

fault, in service platform, 205
infrastructure fault, 204–205
interaction fault, 205

IoT architecture, 202
IoT characteristics, 202

Reliable computing system, 201
Reliable transmission, 292
Remote method invocation (RMI), 9
Remote Procedure Calls (RPC), 80, 290
Representational State Transfer (REST), 9, 80, 290
Request definition tool, 34
Research Platform for Smart Facilities (RP-SMARF), 332

handling heterogeneous resources, 334
multitenancy, 334
operating systems (OSs), 334

Resiliency, 104
Resource discovery, 36
Resource interfaces, 325
Resource management, 41–42

algorithms, 324
service, 323

Resource optimization scheme, 42
Resource provisioning, 65
RESTful APIs, 71, 96, 262
RESTful interaction, 84
Restricted Boltzmann Machine (RBM), 57
RFC 7228, 243
RnRMarketResearch, 6
Road-traffic monitoring, 5
Roundtrip time (RTT), 212
Routing Over Low power and Lossy networks (ROLL), 188

Programming frameworks (cont.)

351Index

RPL control messages, 191
RP-SMARF. See Research Platform for Smart Facilities

(RP-SMARF)
RP-SMARF architecture, 335
RS-485, 279, 281
RS-232 connectors, 281
rtGovOps framework, 228
Ruby, 156
Runtime adaptation engine (RAE), 51

S
SAaaS. See Sensing and Actuation as a Service (SAaaS)
SaaS. See Sensing as a Service (SaaS)
Samsung, 6
Samsung Electronics migrated S Voice, 49
Samsung’s AllShare Convergence solution, 52
Sanctioning mechanisms, 235
Scalability, 64, 91
Scalable Encryption Algorithm (SEA), 194
Seamless connectivity, 15
Secure aggregation support, 248
Secure data aggregation mechanisms, 196
Secure device designs, 235
Secure Hash Algorithm (SHA2), 187
Secure Sockets Layer (SSL), 239, 286
Secure software designs, 235
Security mechanisms, to mitigate the threats, 188
Security/privacy in IoT

asymmetric LWC algorithms, 195
authorization mechanisms, 192

authorization server, 192
client/service consumer (SC), 192
resource owner, 192
resource server, 192

bootstrapping/authentication, 192
concept of, 183
frameworks, 193

light weight cryptography, 194
symmetric-key LWC algorithms, 194

gateways and security, 190
IoT networks, privacy, 196

beacons, 197–198
Enigma, 197
secure data aggregation, 196
zero-knowledge protocols, 197

key agreement/distribution/bootstrapping, 195
security bootstrapping, 195

network/transport layer challenges, 189
OAS service, 193
overview, 188

protocols, 188–189
reference model, 184

routing attacks, 190–191
security requirements, 185

heterogeneous, 186
IP protocol, 186
lightweight security, 187
scale, 186

security threats, 185
Security threats, 185
Semantic QA caching, 54, 56, 57
Semantic Sensor Networks (SSN), 12
Semantic Web of Things (SWoT), 12
Semantic Web Resource Description Framework (RDF), 334
Sensing and Actuation as a Service (SAaaS), 79, 104
Sensing as a Service (SaaS), 79

platforms, 210
Sensor Alert Service (SAS), 134
Sensor-based bridge management, middleware

architecture, 331
Sensor-cloud, 30
Sensor data repositories, 331
Sensor device interfere, 206
Sensor grids, 30
Sensor middleware, 32
Sensor Model Language (SensorML), 134
Sensor network topology, 168
Sensor nodes, 239, 325
Sensor Observation Service (SOS), 133, 134
Sensor resources, 324
Sensors/actuators networks, 130
Sensors/IoT, 31
Sensors register data, 139
Sensor Update (SU), 93
Sensor Web Enablement (SWE)

components, 134
framework, 134

Sequence mining, 54
Serial Clock Line (SCL), 280
Serial Peripheral Interface (SPI), 280
Service Bus, 292

for Windows, 295
Service creation service flowchart, 43
Service Delivery and Utility Manager (SD&UM), 38
Service delivery platforms (SDPs), 9
ServiceID, 38
Service Level Agreement (SLA), 14, 157, 201, 292, 328

compliance, 159
stream-processing systems, 159

Service-oriented architecture (SOA), 8
architectures, 8

Service sustainability, 302
Service update resources, 36
SHT15 sensor, 293
SHT15 temperature, 285

352 Index

Signal Processing Platform for Analysis of Structural Health
(SPPLASH), 332

screenshot of, 333
Simple Object Access Protocol (SOAP), 290
Single-board computer development boards, 291
Single point of failure (SPOF), 208
SLA. See Service Level Agreement (SLA)
Slave Select (SS), 280
SMARF Control Server (SCS), 332
Smart-facility management techniques, 319, 320, 325
Smart metering, 18
Smart mobile phones, 207
Smart Networked Systems and Societies (SNSS), 103
Smartphones, 14
Smart Sheriff, 232
Smart surveillance, 225
Smart TVs, 14
Snappy Ubuntu Core, 129, 211
Social Internet of Things (SIoT), 19
Social sentiment, 58
Software as a service (SaaS), 29
Software defined networking (SDN), 3, 313
Software-Defined Resource Management layer, 64
Software vulnerabilities, 265
Solaris 10, 109
SOSLite, 135
Spam generators, 126
SPARQL data store, 42, 45
SPARQL queries, 34, 334
SPARQL script, 36
SPARQL service, 38
SPI, serial-communication buses, 279
SQL, 65
SQL database, 335
SQL-like declarative language, 149
SQL-like query language, 155
SQL query protocol, 268
3σ rule, 164
Stabilization period, 176
Stakeholders, 227
State consistency, 157
Static/dynamic allocation algorithms, performance, 327
Station-to-Station protocol (STS), 245
Storage as a service (STaaS), 29
Storage system, 154
Storm, 329
Strategic vision, 221
Streaming data

characteristics of, 152
transfer, 335

Stream model, batch model, 149
Stream processing, 147

architecture, 153

Stream processing engine (SPE), 14
Stream processing, in IoT, 145, 146, 148

application of, 149
architecture of, 153–154
challenges/future directions, 157

load balancing, 159
robustness, 159
scalability, 157
SLA-compliance, 159

characteristics of, 151, 152
endlessness and continuousness, 151
endlessness/continuousness, 151
randomness and imperfection, 151
randomness/imperfection, 151
timeliness and instantaneity, 151
timeliness/instantaneity, 151
volatility/unrepeatability, 152

continuous logic processing system (CLPS), 155–157
foundations of, 147

stream, 148
general architecture, 153
system architecture, 146
use-cases of stream processing, 150
volatility/unrepeatability, 152

Substitution-Permutation Network (SPN), 194
SVC-based streaming, 312
SWE. See Sensor Web Enablement (SWE)
Symmetric-key cryptographic algorithms, 194
Synthetic datasets, 172
SysGO, 110
System architecture, 157, 322
System-monitoring service, 324
System on a Chip (SoC), 112, 287

hardware, 288

T
TCP/IP capability, 279
TCP/IP networking stack, 278
TCP/IP stack, 289
TelegraphCQ, 156
Telephony, 126
Television, 126
TelosB nodes, 253
Thing Description Document (TDD), 96
ThinkAir, 12
Threats, 190
3G, 15
Timer access, 110
Time-Varying Traveling Salesman problem, 311
TinyDTLS solution, 247
TinyECC library, 249
Tiny Encryption Algorithm (TEA), 194

353Index

TinyIPFIX, 250
operations, 253
template, 254

TinyOS, 261
TinyTO, 241. See also Constrained devices; two-way

authentication
evaluation, 250

energy consumption, 252–254
memory consumption, 250
runtime performance, 251–252

Handshake implementation, 249
Protocol, 245

BCK, 246–248
Possible handshake protocol candidates, 245–246

TLS/SSL, 188
Total Cost of Ownership (TCO) model, 30, 86
Traffic-data processing, 314
Traffic-light scheduling, 310
Transmission Control Protocol (TCP), 244, 263
Transparency, 221, 230
Transport Layer Security (TLS), 239, 286
Trident abstraction, 150
Trusted execution environment (TEE) techniques, 69
Trusted Platform Module (TPM) chip, 289
TSL2561 luminosity sensor, 285
Two-dimensional dataset, 166
Two Wire Interface (TWI), 280

U
UAVs (Unmanned Aerial Vehicles), 36
UbiSec&Sens project, 242
Ultra-Low-Power Micro-Controller Unit [MCU], 254
Ultraviolet (UV) intensity sensor, 283
Uniform Resource Identifier (URI) codes, 21
Universal Asynchronous Receiver/Transmitter (UART), 281
Unknown Key-Share Attacks (UKSA), 242
Unregister service service flowchart, 40
Update resources service flowchart, 39
User Datagram Protocol (UDP), 243, 263
User-defined safety, 204
User experiences, 234
User identification, 229
User perceived availability, 205

V
Validating applications

use cases, 45
Variable network density, 301
Variable-rate energy model, 140
Vehicle-scheduling algorithms, 311
Vehicle-to-infrastructure (V2I), 300
Vehicle-to-Internet communication, 312

Vehicle-to-road (V2R), 300
Vehicle-to-Vehicle (V2V) communication, 300
Vehicular networks, 301
Vehicular networks (VANETs), 21
VeriSign, 223
V2I-based traffic-light scheduling, 310
Video services, 312
Virtualbox, 107
Virtual GIC (VGIC), 107
Virtualization, embedded boards for cloud of

things, 103
ARM processors, 107
background, 105–107
container-based virtualization, 109
CPU performance analysis, 113–116
experimental results, 112

benchmark tool, 113
reference architecture, 112

future research directions, 121–122
I/O performance analysis, 118–119
KVM arm virtualization, 108
memory footprint analysis, 118
memory performance analysis, 116
network performance analysis, 119
overview of, 103
real-time performance, 110–112
Smart Networked Systems and Societies (SNSS), 103
XEN arm virtualization, 108

Virtualization techniques, 121
taxonomy, 106

hardware-level/process-level, 107
Virtual machines (VM), 69, 128

architecture, 129
Californium, 130
Cloud-assisted remote sensing (CARS), 130
Cloud4Sens, 129

Virtual Network Computing (VNC) server, 333
Virtual Private Network (VPN), 292
Virtuozzo, 109
VM. See Virtual machines (VM)
VMWare, 107
V2R-based vehicle control system, 309
VSaaS (Video Surveillance as a Service), 79
V2V-based adaptive traffic-light control, 310

W
WAVE, channel allocation, 305
W3C SSN directory service, 36, 45
W3C’s Web services, 87
Wearable Cognitive Assistance system, 67
Weather Observations Website (WOW), 294
Weather sensors, 283

354 Index

Weather-station sensors, 284
Web APIs, 9
Web 2.0 applications, 71
Weber discusses IoT governance problem, 227
Web Object (WO), 93
Web of Things, 7
Web services, 325
Wi-Fi, 15, 18, 278
Wi-Fi 802.11a/b/g/n consumes, 282
WiMax, 15
Windows Remote Desk Top Protocol (RDP), 333
Windows Server AMQP- compatible service, 292
WindRiver, 110
Wind-vane voltage divider circuit, 284
1-Wire, 282
Wired Equivalent Privacy (WEP), 243
Wired/wireless Internet stack, 286
Wireless communication, 20
Wireless connection, 264
Wireless Local Area Network (WLAN)

standards, 303
Wireless networks, 308
Wireless Sensor Network (WSN), 3, 320, 326

devices, 239, 252
literature, 41

state-of-the-art techniques, 337
technologies, 29

Workload bursting, 49
World forum reference model, 184
World Wide Web, 126
WOTkit processor, 94
WSN. See Wireless Sensor Network (WSN)

X
Xbee, 283
Xen, 107
X-GSN sensor middleware module, 41
XML files, 9, 155, 262
XMPP, 262
X10 standard, 282
XtratuM, 107

Z
Zero-day attacks, 267
Zero-knowledge protocols, 197
Zero tolerance, 203
ZigBee, 188, 283
Zipf distribution, 56
Z-Wave, 283

	Cover
	Title Page
	Copyright Page
	Contents
	List of Contributors
	About the Editors
	Preface
	Organization of the book

	Acknowledgments
	Part I - IoT Ecosystem concepts and architectures
	Chapter 1 - Internet of Things: an overview
	1.1 - Introduction
	1.2 - Internet of Things definition evolution
	1.2.1 - IoT emergence
	1.2.2 - Internet of Everything
	1.2.3 - Industrial IoT
	1.2.4 - Smartness in IoT
	1.2.5 - Market share
	1.2.6 - Human in the loop
	1.2.7 - Improving the quality of life

	1.3 - IoT architectures
	1.3.1 - SOA-based architecture
	1.3.2 - API-oriented architecture

	1.4 - Resource management
	1.4.1 - Resource partitioning
	1.4.2 - Computation offloading
	1.4.3 - Identification and resource/service discovery

	1.5 - IoT data management and analytics
	1.5.1 - IoT and the Cloud
	1.5.2 - Real-time analytics in IoT and Fog Computing

	1.6 - Communication protocols
	1.6.1 - Network layer
	1.6.2 - Transport and application layer

	1.7 - Internet of Things applications
	1.7.1 - Monitoring and actuating
	1.7.2 - Business process and data analysis
	1.7.3 - Information gathering and collaborative consumption

	1.8 - Security
	1.9 - Identity management and authentication
	1.10 - Privacy
	1.11 - Standardization and regulatory limitations
	1.12 - Conclusions
	References

	Chapter 2 - Open source semantic web infrastructure for managing IoT resources in the Cloud
	2.1 - Introduction
	2.2 - Background/related work
	2.3 - OpenIoT architecture for IoT/Cloud convergence
	2.4 - Scheduling process and IoT services lifecycle
	2.5 - Scheduling and resource management
	2.6 - Validating applications and use cases
	2.7 - Future research directions
	2.8 - Conclusions
	Acknowledgments
	References

	Chapter 3 - Device/Cloud collaboration framework for intelligence applications
	3.1 - Introduction
	3.2 - Background and related work
	3.3 - Device/Cloud collaboration framework
	3.3.1 - Powerful smart mobile devices
	3.3.2 - Runtime Adaptation Engine
	3.3.3 - Privacy-protection solution

	3.4 - Applications of Device/Cloud collaboration
	3.4.1 - Context-aware Proactive Suggestion
	3.4.2 - Semantic QA cache
	3.4.3 - Image and speech recognition

	3.5 - Future work
	3.6 - Conclusions
	Acknowledgments
	References

	Chapter 4 - Fog Computing: principles, architectures, and applications
	4.1 - Introduction
	4.2 - MotivatiNG scenario
	4.3 - Definitions and characteristics
	4.4 - Reference architecture
	4.5 - Applications
	4.5.1 - Healthcare
	4.5.2 - Augmented reality
	4.5.3 - Caching and preprocessing

	4.6 - Research directions and enablers
	4.6.1 - Programming models
	4.6.2 - Security and reliability
	4.6.3 - Resource management
	4.6.4 - Energy minimization

	4.7 - Commercial products
	4.7.1 - Cisco IOx
	4.7.2 - Data in motion
	4.7.3 - LocalGrid
	4.7.4 - ParStream
	4.7.5 - Prismtech Vortex

	4.8 - Case study
	4.8.1 - Experiment setup
	4.8.1.1 - Network Topology and Data Sources

	4.8.2 - Performance evaluation
	4.8.2.1 - Average Tuple Delay
	4.8.2.2 - Core Network Usage

	4.9 - Conclusions
	References

	Part II - IoT Enablersand solutions
	Chapter 5 - Programming frameworks for Internet of Things
	5.1 - Introduction
	5.2 - Background
	5.2.1 - Overview
	5.2.2 - Embedded device programming languages
	5.2.2.1 - nesC
	5.2.2.2 - Keil C
	5.2.2.3 - Dynamic C
	5.2.2.4 - B#

	5.2.3 - Message passing in devices
	5.2.3.1 - RPC
	5.2.3.2 - REST
	5.2.3.3 - CoAP

	5.2.4 - Coordination languages
	5.2.4.1 - Linda and eLinda
	5.2.4.2 - Orc
	5.2.4.3 - Jolie

	5.2.5 - Polyglot programming

	5.3 - Survey of IoT programming frameworks
	5.3.1 - Overview
	5.3.2 - IoT programming approaches
	5.3.3 - Existing IoT frameworks
	5.3.3.1 - Mobile Fog
	5.3.3.2 - ELIoT (Erlang Language for IoT)
	5.3.3.3 - Compose API
	5.3.3.4 - Distributed Dataflow Support for IoT
	5.3.3.5 - PyoT
	5.3.3.6 - Dripcast
	5.3.3.7 - Calvin
	5.3.3.8 - Simurgh
	5.3.3.9 - High-Level Application Development for the Internet of Things
	5.3.3.10 - PatRICIA

	5.3.4 - Summary

	5.4 - Future research directions
	5.5 - Conclusions
	References

	Chapter 6 - Virtualization on embedded boards as enabling technology for the Cloud of Things
	6.1 - Introduction
	6.2 - Background
	6.2.1 - ARM virtualization extensions
	6.2.2 - XEN ARM virtualization
	6.2.3 - KVM ARM virtualization
	6.2.4 - Container-based virtualization

	6.3 - Virtualization and real-time
	6.4 - Experimental results
	6.4.1 - Reference architecture
	6.4.2 - Benchmarking tools
	6.4.3 - Discussion
	6.4.3.1 - CPU Performance Analysis
	6.4.3.2 - Memory Performance Analysis
	6.4.3.3 - Memory Footprint Analysis
	6.4.3.4 - I/O Performance Analysis
	6.4.3.5 - Network Performance Analysis

	6.5 - Future research directions
	6.6 - Conclusions
	References

	Chapter 7 - Micro Virtual Machines (MicroVMs) for Cloud-assisted Cyber-Physical Systems (CPS)
	7.1 - Introduction
	7.2 - Related work
	7.2.1 - Virtual machines and Micro Virtual Machines
	7.2.2 - Other architectures

	7.3 - Architecture for deploying CPS in the Cloud and the expansion of the IoT
	7.4 - Extending the possibilities of the IoT by Cloud Computing
	7.5 - Micro Virtual Machines with the Sensor Observation Service, the path between smart objects and CPS
	7.5.1 - Virtual machines and Sensor Observation Service
	7.5.2 - Implementation

	7.6 - IoT architecture for selected use cases
	7.6.1 - eHealth
	7.6.2 - Precision Agriculture
	7.6.3 - Domotic

	7.7 - Future research directions
	7.8 - Conclusions
	References

	Part III - IoT Data andknowledgemanagement
	Chapter 8 - Stream processing in IoT: foundations, state-of-the-art, and future directions
	8.1 - Introduction
	8.2 - The foundations of stream processing in IoT
	8.2.1 - Stream
	8.2.2 - Stream processing
	8.2.3 - The Characteristics of stream data in IoT
	8.2.3.1 - Timeliness and Instantaneity
	8.2.3.2 - Randomness and Imperfection
	8.2.3.3 - Endlessness and Continuousness
	8.2.3.4 - Volatility and Unrepeatability

	8.2.4 - The general architecture of a stream-processing system in IoT

	8.3 - Continuous Logic Processing System
	8.4 - Challenges and future directions
	8.4.1 - Scalability
	8.4.2 - Robustness
	8.4.3 - SLA-compliance
	8.4.4 - Load balancing

	8.5 - Conclusions
	References

	Chapter 9 - A framework for distributed data analysis for IoT
	9.1 - Introduction
	9.2 - Preliminaries
	9.3 - Anomaly detection
	9.4 - Problem statement and definitions
	9.4.1 - Hyperellipsoidal anomaly detection

	9.5 - Distributed anomaly detection
	9.5.1 - Clustering ellipsoids
	9.5.2 - Experimental results

	9.6 - Efficient incremental local modeling
	9.6.1 - Incremental updates
	9.6.2 - Implementation of incremental updates
	9.6.3 - Experimental results

	9.7 - Summary
	References

	Part IV - IoT Reliability,security, andprivacy
	Chapter 10 - Security and privacy in the Internet of Things
	10.1 - Concepts
	10.1.1 - IoT reference model
	10.1.2 - IoT security threats
	10.1.3 - IoT security requirements
	10.1.3.1 - Scale
	10.1.3.2 - IP Protocol-Based IoT
	10.1.3.3 - Heterogeneous IoT
	10.1.3.4 - Lightweight Security

	10.2 - IoT security overview
	10.2.1 - IoT protocols
	10.2.2 - Network and transport layer challenges
	10.2.3 - IoT gateways and security
	10.2.4 - IoT routing attacks
	10.2.5 - Bootstrapping and authentication
	10.2.6 - Authorization mechanisms
	10.2.6.1 - Resource Owner
	10.2.6.2 - Resource Server (Service Provider, SP)
	10.2.6.3 - Client (Service Consumer, SC)
	10.2.6.4 - Authorization Server

	10.2.7 - IoT OAS

	10.3 - Security frameworks for IoT
	10.3.1 - Light weight cryptography
	10.3.1.1 - Symmetric-Key LWC Algorithms

	10.3.2 - Asymmetric LWC algorithms
	10.3.3 - Key agreement, distribution, and bootstrapping
	10.3.3.1 - Security Bootstrapping

	10.4 - Privacy in IoT networks
	10.4.1 - Secure data aggregation
	10.4.2 - Enigma
	10.4.3 - Zero knowledge protocols
	10.4.4 - Privacy in beacons

	10.5 - Summary and conclusions
	References

	Chapter 11 - Internet of Things—robustness and reliability
	11.1 - Introduction
	11.2 - IoT characteristics and reliability issues
	11.2.1 - IoT architecture in brief
	11.2.1.1 - Different Categories of Applications
	11.2.1.1.1 - Zero tolerance
	11.2.1.1.2 - Restartable
	11.2.1.1.3 - Error Tolerant

	11.2.2 - Failure scenarios
	11.2.2.1 - Infrastructure Fault
	11.2.2.2 - Interaction Fault
	11.2.2.3 - Fault in Service Platform

	11.2.3 - Reliability challenges
	11.2.3.1 - Making Service Available to User
	11.2.3.2 - Serviceability of IoT System
	11.2.3.3 - Reliability at Network Level
	11.2.3.4 - Device Level Reliability

	11.2.4 - Privacy and reliability
	11.2.5 - Interoperability of devices
	11.2.6 - Reliability issues due to energy constraint

	11.3 - Addressing reliability
	11.3.1 - Nullifying impact of fault
	11.3.1.1 - Redundancy in Service Platform Design
	11.3.1.2 - Redundancy in M2M Topology
	11.3.1.3 - Graceful Degradation
	11.3.1.3.1 - Software Design
	11.3.1.3.2 - Performability Model

	11.3.2 - Error detection
	11.3.2.1 - Watchdog
	11.3.2.2 - Heartbeat
	11.3.2.3 - Exception Handling
	11.3.2.4 - Recovery Through Restart

	11.3.3 - Fault prevention
	11.3.3.1 - Failure Prediction
	11.3.3.2 - Improving Communication Reliability
	11.3.3.2.1 - Service Degradation Support

	11.3.3.3 - Failure Prevention by Service Platform
	11.3.3.4 - Improving Energy Efficiency
	11.3.3.4.1 - Device Power Management
	11.3.3.4.2 - Communication Power Management
	11.3.3.4.3 - Service Platform
	11.3.3.4.3.1 - Data Quality vs Energy Usage

	References

	Chapter 12 - Governing Internet of Things: issues, approaches, and new paradigms
	12.1 - Introduction
	12.2 - Background and related work
	12.2.1 - Overview
	12.2.2 - Background
	12.2.2.1 - Governance
	12.2.2.2 - Internet Governance
	12.2.2.3 - Enterprise Network Management
	12.2.2.4 - Management Versus Governance
	12.2.2.5 - Surveillance and Internet of Things

	12.2.3 - Related work

	12.3 - IoT governance
	12.3.1 - Overview
	12.3.2 - An integrated governance idea
	12.3.3 - Governance models
	12.3.4 - Important governance issues
	12.3.5 - Existing approaches
	12.3.6 - New paradigms

	12.4 - Future research directions
	12.5 - Conclusions
	References

	Chapter 13 - TinyTO: two-way authentication for constrained devices in the Internet of Things
	13.1 - Introduction
	13.2 - Security aspects and solutions
	13.3 - Design decisions
	13.4 - TinyTO protocol
	13.4.1 - Possible handshake protocol candidates
	13.4.2 - BCK with preshared keys for TinyTO
	13.4.3 - Handshake implementation

	13.5 - Evaluation
	13.5.1 - Memory consumption
	13.5.2 - Runtime performance
	13.5.3 - Energy consumption

	13.6 - Summary
	Acknowledgments
	References

	Chapter 14 - Obfuscation and diversification for securing the internet of things (IoT)
	14.1 - Introduction
	14.2 - Distinguishing characteristics of IoT
	14.2.1 - Operating systems and software in IoT
	14.2.2 - IoT network stack and access protocols
	14.2.3 - Security and privacy in IoT

	14.3 - Obfuscation and diversification techniques
	14.4 - Enhancing the security in IoT using obfuscation and diversification techniques
	14.4.1 - Motivations and limitations of the proposed ideas

	14.5 - Different use-case scenarios on software diversification and obfuscation
	14.6 - Conclusions and future work
	References

	Part V - IoT Applications
	Chapter 15 - Applied Internet of Things
	15.1 - Introduction
	15.2 - Scenario
	15.3 - Architecture overview
	15.3.1 - Sensor to gateway communication
	15.3.1.1 - Wired Gateway Interfaces
	15.3.1.2 - Wireless Gateway Interfaces

	15.4 - Sensors
	15.5 - The gateway
	15.5.1 - Gateway hardware
	15.5.2 - Gateway software
	15.5.3 - Summary

	15.6 - Data transmission
	15.6.1 - Advanced Message Queuing Protocol
	15.6.2 - Backend processing
	15.6.2.1 - Overview
	15.6.2.2 - Data Processing Framework

	15.6.3 - To Cloud or not to Cloud

	15.7 - Conclusions
	Acknowledgments
	References

	Chapter 16 - Internet of Vehicles and applications
	16.1 - Basics of IoV
	16.1.1 - Background and concept
	16.1.2 - Network architecture
	16.1.2.1 - Vehicles in IoV
	16.1.2.2 - Connections in IoV
	16.1.2.3 - Servers/Clouds in IoV

	16.2 - Characteristics and challenges
	16.2.1 - Characteristics of IoV
	16.2.2 - Challenges in IoV

	16.3 - Enabling technologies
	16.3.1 - MAC protocols and standards
	16.3.1.1 - IEEE 802.11
	16.3.1.2 - IEEE 802.11p/WAVE

	16.3.2 - Routing protocols
	16.3.2.1 - AODV
	16.3.2.2 - OLSR
	16.3.2.3 - Multihop-MAC Protocol (IEEE 802.11s)

	16.3.3 - Broadcasting and information dissemination
	16.3.3.1 - V2V Based
	16.3.3.2 - V2R Based
	16.3.3.3 - DTN Based

	16.4 - Applications
	16.4.1 - Driving safety related
	16.4.2 - Transportation efficiency related
	16.4.2.1 - Intersection Control
	16.4.2.2 - Route Navigation
	16.4.2.3 - Parking Navigation
	16.4.2.4 - Cooperative Driving

	16.4.3 - Infotainment services

	16.5 - Summary and future directions
	References

	Chapter 17 - Cloud-Based Smart-Facilities Management
	17.1 - Introduction
	17.2 - Background and related work
	17.3 - A cloud-based architecture for smart-facility management
	17.4 - Middleware services
	17.5 - Resource management techniques for wireless sensor networks
	17.5.1 - Sensor allocation
	17.5.2 Request scheduling

	17.6 - Resource management techniques for supporting data analytics
	17.6.1 - Streaming data analytics

	17.7 - Case study: management of sensor-based bridges
	17.8 - Case study: research collaboration platform for management of smart machinery
	17.9 - Conclusions
	17.9.1 - Future research directions

	Acknowledgments
	References

	Index
	Back cover

